A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analysis of Microbiomes from Ultra-Low Biomass Surfaces Using Novel Surface Sampling and Nanopore Sequencing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid assessment of microbiomes from ultra-low biomass environments such as cleanrooms or hospital operating rooms has a number of applications for human health and spacecraft manufacturing. Current techniques often employ lengthy protocols using short-read DNA sequencing technology to analyze amplified DNA and have the disadvantage of a longer analysis time and lack of portability. Here, we demonstrate a rapid (~24 hours) on-site nanopore-based sequencing approach to characterize the microbiome of a NASA Class 100K cleanroom where spacecraft components are assembled. This approach employs a modified protocol of Oxford Nanopore's Rapid PCR Barcoding Kit in combination with the recently developed Squeegee-Aspirator for Large Sampling Area (SALSA) surface sampling device. Results for these ultra-low biomass samples revealed DNA amplification ~1 to 2 orders of magnitude above process control samples and were dominated primarily by and species. Negative control samples were collected to provide critical data on background contamination, including , which most likely originated from the sampling reagents-associated microbiome (kitome). Overall, these results provide data on a novel approach for rapid low-biomass DNA profiling using the SALSA sampler combined with modified nanopore sequencing. These data highlight the critical need for employing multiple negative controls, along with using DNA-free reagents and techniques, to enable a proper assessment of ultra-low biomass samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644977PMC
http://dx.doi.org/10.7171/3fc1f5fe.bac4a5b3DOI Listing

Publication Analysis

Top Keywords

ultra-low biomass
16
microbiomes ultra-low
8
surface sampling
8
nanopore sequencing
8
biomass samples
8
control samples
8
analysis microbiomes
4
ultra-low
4
biomass
4
biomass surfaces
4

Similar Publications