98%
921
2 minutes
20
DNA damage is emerging as a driver of heart disease, although the cascade of events, its timing, and the cell types involved are yet to be fully clarified. In this context, the implication of cardiomyocytes has been highlighted, while that of vasculature smooth muscle cells has been implicated but not explored exhaustively. In our previous work we characterized a factor called Ft1 in mice and AKTIP in humans whose depletion generates telomere instability and DNA damage. Herein, we explored the effect of the reduction of Ft1 on the heart with the goal of comparatively defining the impact of DNA damage targeted to vasculature smooth muscle cells to that of diffuse damage. Using two newly generated mouse models, Ft1 constitutively knocked out (Ft1ko) mice, and mice in which we targeted the Ft1 depletion to the smooth muscle cells (Ft1sm22ko), it is shown that both genetic models display cardiac defects but with differences. Both Ft1ko and Ft1sm22ko mice display hypertrophy, fibrosis, and functional heart defects. Interestingly, Ft1sm22ko mice have early milder pathological traits that become manifest with age. Significantly, the defects of Ft1ko mice, including the alteration of the left ventricle and functional heart defects, are rescued by depletion of the DNA damage sensor p53. These results point to Ft1 deficiency as a driver of cardiac disease and show that Ft1 deficiency targeted to vasculature smooth muscle cells generates a pre-pathological profile exacerbated by age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726857 | PMC |
http://dx.doi.org/10.1111/acel.14022 | DOI Listing |
Toxicol Sci
September 2025
Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ, USA.
Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
Bull Environ Contam Toxicol
September 2025
Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMDP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
The potential genotoxicity of the fungicide tebuconazole (TBZ) was evaluated in the freshwater fish Jenynsia lineata when exposed to 0.005, 0.05, 0.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India.
Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.
BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.
View Article and Find Full Text PDF