Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Allelopathy is a biological mechanism that can promote harmful algal blooms (HAB) via the inhibition of sympatric phytoplankton. While nutrient loading can also promote HABs, the ability of allelopathy to stimulate HABs via the regeneration of nutrients has yet to be explored. To examine the impacts of allelopathically liberated N on HAB species, a series of experiments were performed using multiple allelopathic HAB species including the dinoflagellates Alexandrium catenella and Margalefidinium polykrikoides, and the pelagophyte, Aureoumbra lagunensis. These HAB species were paired with the cosmopolitan dinoflagellate, Akashiwo sanguinea, that was labeled with NO or NH, allowing the release and transfer of N to be traced as a time course during allelopathic interactions. During all experiments, the allelopathic inhibition of Akashiwo was accompanied by increases in cell densities, growth rates, and the δN content of the HAB species, evidencing the transfer of N liberated from Akashiwo. The cellular transfer of N and release of dissolved N was higher when Akashiwo was grown with NO compared to NH suggesting a differential subcellular-compartmentalization of N sources. Regardless of the type of N, HAB species obtained 60 - 100% of their cellular N from lysed Akashiwo cells and there was an enrichment of the δN content of the dissolved NH pool post-lysis of Akashiwo. Collectively, the results demonstrate that beyond facilitating species succession, allelopathy can supply HABs with N and, therefore, is likely important for promoting and sustaining HABs. Given that allelopathy is known to be a dose-dependent process, allelopathy may induce a positive feedback loop, whereby competitors are lysed, N is liberated, HABs are intensified and, in turn, become more strongly allelopathic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2023.102490 | DOI Listing |