A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Feature recognition in multiple CNNs using sEMG images from a prototype comfort test. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Deep learning-based CNN networks have recently been investigated to solve the problem of body posture recognition based on surface electromyographic signals (sEMG). Influenced by these studies, to develop a combined approach of sEMG and CNNs in the study of human-product interactions and the impact of body comfort, and to compare the advantages and disadvantages of various CNNs networks.

Methods: In this study, sEMG measurements were carried out by building a prototype usability experiment, and the data were divided into four categories, with two types of datasets: training and testing. Four CNNs, LeNet-5, VGGNet-11, InceptionNet V4, and DenseNet, were used for the recognition of sEMG images.

Results: DenseNet is another type of convolutional neural network with deep layers, which has a unique advantage over other algorithms. unique advantages over other algorithms. DenseNet has fewer layers and better accuracy than InceptionNet V4, but not only does it bypass enhanced feature reuse, but its network is easier to train and has some regularization effects, while also mitigating the problems of gradient disappearance and model degradation.

Conclusion: These findings could lead to a more appropriate CNN model and a useful tool for developing comfort judgments of surface EMG signals, furthering the development of products that come into contact with the human body without the need for routine retraining.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107897DOI Listing

Publication Analysis

Top Keywords

semg
5
feature recognition
4
recognition multiple
4
cnns
4
multiple cnns
4
cnns semg
4
semg images
4
images prototype
4
prototype comfort
4
comfort test
4

Similar Publications