98%
921
2 minutes
20
We have investigated the impact of obesity on the structural organization, morpho-mechanical properties of collagen fibers from rat tail tendon fascicles (RTTFs). Polarized Raman microspectroscopy showed that the collagen bands 855, 875, 938, and 960 cm as well as those 1631 and 1660 cm were affected by diet. Mechanical properties exhibited an increase in the yield strength from control (CTRL) to high fat (HF) diet (9.60 ± 1.71 and 13.09 ± 1.81 MPa) (p < 0.01) and ultimate tensile strength (13.12 ± 2.37 and 18.32 ± 2.83 MPa) (p < 0.05) with no significant change in the Young's Modulus. During mechanical, the band at 875 cm exhibited the most relevant frequency shift (2 cm). The intensity of those at 855, 875, and 938 cm in HF collagen displayed a comparable response to mechanical stress as compared to CTRL collagen with no significant diet-related changes in the Full Width at Half Maximum. Second harmonic generation technique revealed i) similar fiber straightness (0.963 ± 0.004 and 0.965 ± 0.003) and ii) significant changes in fibers diameter (1.48 ± 0.07 and 1.52 ± 0.08 μm) (p < 0.05) and length (22.06 ± 2.38 and 29.00 ± 3.76 μm) (p < 0.001) between CTRL and HF diet, respectively. The quantification of advanced glycation end products (AGEs) revealed an increase in both carboxymethyl-lysine and total fluorescence AGEs from CTRL to HF RTTFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127936 | DOI Listing |
J Mech Behav Biomed Mater
August 2025
Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria. Electronic address:
Torsional loading of the growth plate occurs in daily activities and sports and is associated with growth plate fractures. This study aimed to investigate the microstructural and mechanical properties of growth plate tissue under torsional loading, focusing on variations across individuals, growth plate types, and anatomical locations. A total of 140 samples from three distinct growth plates in five porcine subjects were subjected to cyclic torsion tests followed by ultimate failure testing.
View Article and Find Full Text PDFSci Rep
May 2025
Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy.
Neoplastic transformation is accompanied by critical changes in cell mechanical properties, including reduced cell elasticity. By leveraging such mechanical flaw, exposure to low intensity therapeutic ultrasounds (LITUS) has been proposed as a tool for selective killing of cancer cells. Here, we have developed dynamic models to address the morpho-mechanical differences between prostate cancer and non-tumoral counterparts and studied the effects of LITUS on cell viability.
View Article and Find Full Text PDFJ Physiol
May 2025
Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
Non-insertional Achilles tendinopathy (NIAT) induces morpho-mechanical changes to the Achilles tendon (AT). Evidence on how triceps surae motor unit firing properties are influenced by altered tendon mechanics in NIAT is limited. This study investigated motor unit firing properties (mean discharge rate (DR), recruitment and de-recruitment thresholds, and discharge rate variability (COVisi)), motor unit firing-torque relationships (cross-correlation coefficient between cumulative spike train (CST) and torque, and neuromechanical delay (NMD)) and neural drive distribution (connectivity strength and functional networks) of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (SO) muscles during isometric plantarflexion contractions at 10%, 40%, and 70% maximal voluntary contraction (MVC) using high-density surface electromyography (HD-sEMG) on 26 individuals with NIAT and 25 healthy controls.
View Article and Find Full Text PDFCell Mol Bioeng
April 2025
Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa.
Purpose: Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus that has a tropism for endothelial cells and leads to the development of Kaposi's sarcoma, especially in people living with HIV. The present study aimed to quantify morphological and mechanical changes in endothelial cells after infection with KSHV to assess their potential as diagnostic and therapeutic markers.
Methods: Vascular (HuARLT2) and lymphatic endothelial cells (LEC) were infected with recombinant KSHV (rKSHV) by spinoculation, establishing stable infections (HuARLT2-rKSHV and LEC-rKSHV).
Cancers (Basel)
March 2025
Mathematics and Physics Department "Ennio De Giorgi", University of Salento, Via Arnesano, 73100 Lecce, Italy.
The implementation of novel analytic methodologies in cancer and biomedical research has enabled the quantification of parameters that were previously disregarded only a few decades ago. A notable example of this paradigm shift is the widespread integration of atomic force microscopy (AFM) into biomedical laboratories, significantly advancing our understanding of cancer cell biology and treatment response. AFM allows for the meticulous monitoring of different parameters at the molecular and nanoscale levels, encompassing critical aspects such as cell morphology, roughness, adhesion, stiffness, and elasticity.
View Article and Find Full Text PDF