Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A quinoline derivative 7-((2-aminoethyl)amino)-5-bromo-6-hydroxy-1-methylquinolin-1-ium-3-sulfonate (QEt) containing quinoline ring, - sulfonate, -OH phenol, and amine groups was synthesized and studied luminescence properties. The aqueous solutions QEt 10µM change luminescence color from green (λ = 490 nm) to yellow (λ = 563 nm) as increasing pH and the intensity at a peak of 563 nm is linearly proportional with pH value in the range of pH = 3,0-4,0. The QEt solution can be used as a chemosensor for Cu with an LOD value at 0.66 . Along with the experiment, the structure, absorption and emission spectra of QEt have been investigated by TD-DFT calculation. The result shows that the absorption band centered at 420 nm is due to the electron transition from HOMO to LUMO (π → π*). The results also help to assign emission band centered at 490 nm is due to the S → S transition (LUMO → HOMO singlet transition), at 563 nm is due to the T → S transition (LUMO → HOMO triplet transition). The dependence of the relative intensity of each emission peak on pH, which is experimentally recorded, is explained based on the results of theoretical TD-DFT calculation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-023-03477-9DOI Listing

Publication Analysis

Top Keywords

lumo →
12
td-dft calculation
8
band centered
8
→ transition
8
transition lumo
8
→ homo
8
transition
5
5
fluorescent chemosensor
4
chemosensor detection
4

Similar Publications

Density functional theory (DFT) calculations were performed to examine the potential of the RuC nanosheet as a biosensor towards the aromatic amino acids (AAA; tryptophan (TRP), histidine (HIS), tyrosine (TYR), and phenylalanine (PHE)). The AAA molecules were placed vertically and horizontally with respect to the RuC surface and then subjected to geometrical relaxation. According to the geometry relaxation results, it was found that all AAA molecules preferred to be adsorbed on the RuC surface in a horizontal configuration rather than a vertical one, except the HIS molecule, which desired to be vertically adsorbed on the RuC nanosheet.

View Article and Find Full Text PDF

pi-Acceptor effects are often used to account for the unusual high lability of [Pt(terpy)L]((2)(-)(n)+) (terpy = 2,2':6',2' '-terpyridine) complexes. To gain further insight into this phenomenon, the pi-acceptor effect was varied systematically by studying the lability of [Pt(diethylenetriamine)OH(2)](2+) (aaa), [Pt(2,6-bis-aminomethylpyridine)OH(2)](2+) (apa), [Pt(N-(pyridyl-2-methyl)-1,2-diamino-ethane)OH(2)](2+) (aap), [Pt(bis(2-pyridylmethyl)amine)OH(2)](2+) (pap), [Pt(2,2'-bipyridine)(NH(3))(OH(2))](2+) (app), and [Pt(terpy)OH(2)](2+) (ppp). The crystal structure of the apa precursor [Pt(2,6-bis-aminomethylpyridine)Cl]Cl.

View Article and Find Full Text PDF

We utilize the experience gained in our previous studies on the "chemistry of vibronic coupling" in simple homonuclear and heteronuclear molecules to begin assembling theoretical guidelines for the construction of potentially superconducting solids exhibiting large electron-phonon coupling. For this purpose we analyze similarities between vibronic coupling in isolated molecules and in extended solids. In particular, we study vibronic coupling along the antisymmetric stretch coordinate (Q(as)) in linear symmetric AAA molecules, and along the optical phonon "pairing" mode coordinate (Q(opt)) in corresponding one-dimensional [A]( infinity ) chains built of equidistant A atoms.

View Article and Find Full Text PDF