A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synergistic pervaporation dehydration of ethanol/water mixture: Exploring the potential of a covalently designed hybrid membrane structure of polyacrylic acid grafted carbon nitride and polyvinyl alcohol. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyacrylic acid (PAA) grafted CN sheet (P-g-CN) was synthesized to enhance the dispersive properties of carbon nitride (CN) in the membrane. A successful PAA grafting to the CN was confirmed from FTIR, TGA, and Zeta potential and XRD analyses. The A PVA membrane embedded P-g-CN, including a covalently constructed polymer-filler network, was developed to separate ethanol-water mixtures using pervaporation (PV). XPS study has confirmed a covalent attachment of P-g-CN sheets to the PVA matrix. Thereby, a defect-free membrane matrix was observed in the FESEM analysis. A 10 wt% loaded PVA-P-g-CN10 composite membrane was compared to the pristine PVA membrane, demonstrating improved PV dehydration performance. The flux decreased from 0.21 kg/mh of pristine PVA membrane to 0.17 kg/mh of PVA-P-g-CN10 membrane, while the separation factor improved from 49 to 176 in a 90/10 wt % ethanol/water feed at 40 °C. This improvement can be attributed to the selective diffusion of water through the P-g-CN interlayer spacing and tiny triangular nanopores in the s-triazine network, along with their dispersibility in the PVA matrix, resulting in well-ordered membrane morphology. Furthermore, PVA-P-g-CN10 exhibited higher water permeance (43.31-86.07 GPU) than ethanol (1.18-10.47 GPU) as the feed temperature increased from 30 to 70 °C, suggesting P-g-CN successfully inhibits swelling in the feed solution through proper interaction with PVA. In a long-term PV test lasting 250 h, the PVA-P-g-CN10 membrane displayed excellent structural stability and maintained its performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140593DOI Listing

Publication Analysis

Top Keywords

pva membrane
12
membrane
10
polyacrylic acid
8
carbon nitride
8
pva matrix
8
pristine pva
8
pva-p-g-cn10 membrane
8
pva
6
p-g-cn
5
synergistic pervaporation
4

Similar Publications