Fabrication of next-generation multifunctional LBG-s-AgNPs@ g-CN NS hybrid nanostructures for environmental applications.

Environ Res

Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Toxic industrial wastes and microbial pathogens in water pose a continuous threat to aquatic life as well as alarming situations for humans. Developing advanced materials with an environmentally friendly approach is always preferable for heterogeneous visible light photocatalysis. As a green reducing tool, LBG-s-AgNPs@ g-CN NS hybrid nanostructures were anchored onto graphitic carbon nitride (g-CN) using an environmentally friendly approach of anchoring/decorating AgNPs onto g-CN. With the help of advanced techniques, the fabricated hybrid nanostructures were characterized. Using a sheet like matrix of g-CN, nanosized and well-defined uniform AgNPs displayed good antibacterial activity as well as superior photodegradation of hazardous dyes, including methylene blue (MB) and Rhodamine B (RhB). Based on the disc diffusion method, three pathogenic microorganisms of clinical significance can be identified by showing the magnitude of their susceptibility. As a result, the following antimicrobial potency was obtained: E. coli ≥ M. luteus ≥ S. aureus. In this study, green synthesized (biogenic) AgNPs decorated with g-CN were found to be more potent antimicrobials than traditional AgNPs. Under visible light irradiation, LBG-s-AgNPs@g-CN NS (0.01 M) demonstrated superior photocatalytic performance: ∼100% RhB degradation and ∼99% of MB degradation in 160 min. LBG-s-AgNPs@g-CN NS showed the highest kinetic rate, 3.44 × 10 min, which is 27.74 times for the control activity in case of MB dye. While in case of RhB dye LBG-s-AgNPs@g-CN NS showed the highest kinetic rate, 2.26 × 10 min, which is 17.51 times for the control activity. Due to the surface plasmon resonance (SPR) and reduction in recombination of the electrons and holes generated during photocatalysis, anchoring AgNPs to g-CN further enhanced the photocatalytic degradation of dyes. Using this photocatalyst, hazardous dyes can be efficiently and rapidly degraded, allowing it to be applied for wastewater treatment contaminated with dyes. It also showed remarkable antimicrobial activity towards Gram-ve/Gram + ve pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117540DOI Listing

Publication Analysis

Top Keywords

hybrid nanostructures
12
lbg-s-agnps@ g-cn
8
g-cn hybrid
8
environmentally friendly
8
friendly approach
8
visible light
8
agnps g-cn
8
hazardous dyes
8
lbg-s-agnps@g-cn highest
8
highest kinetic
8

Similar Publications

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.

View Article and Find Full Text PDF