Rapid estimation of electroporation-dependent tissue properties in canine lung tumors using a deep neural network.

Biosens Bioelectron

Department of Biomedical Engineering and Mechanics, Virginia Tech and Wake Forest University, Blacksburg, VA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The efficiency of electroporation treatments depends on the application of a critical electric field over the targeted tissue volume. Both the electric field and temperature distribution strongly depend on the tissue-specific electrical properties, which both differ between patients in healthy and malignant tissues and change in an electric field-dependent manner from the electroporation process itself. Therefore, tissue property estimations are paramount for treatment planning with electroporation therapies. Ex vivo methods to find electrical tissue properties often misrepresent the targeted tissue, especially when translating results to tumors. A voltage ramp is an in situ method that applies a series of increasing electric potentials across treatment electrodes and measures the resulting current. Here, we develop a robust deep neural network, trained on finite element model simulations, to directly predict tissue properties from a measured voltage ramp. There was minimal test error (R>0.94;p<0.0001) in three important electric tissue properties. Further, our model was validated to correctly predict the complete dynamic conductivity curve in a previously characterized ex vivo liver model (R>0.93;p<0.0001) within 100 s from probe insertion, showing great utility for a clinical application. Lastly, we characterize the first reported electrical tissue properties of lung tumors from five canine patients (R>0.99;p<0.0001). We believe this platform can be incorporated prior to treatment to quickly ascertain patient-specific tissue properties required for electroporation treatment planning models or real-time treatment prediction algorithms. Further, this method can be used over traditional ex vivo methods for in situ tissue characterization with clinically relevant geometries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115777DOI Listing

Publication Analysis

Top Keywords

tissue properties
12
deep neural
8
neural network
8
electric field
8
targeted tissue
8
voltage ramp
8
tissue
6
rapid estimation
4
estimation electroporation-dependent
4
electroporation-dependent tissue
4

Similar Publications

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF