A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Weakly supervised segmentation of uterus by scribble labeling on endometrial cancer MR images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Uterine segmentation of endometrial cancer MR images can be a valuable diagnostic tool for gynecologists. However, uterine segmentation based on deep learning relies on artificial pixel-level annotation, which is time-consuming, laborious and subjective. To reduce the dependence on pixel-level annotation, a method of weakly supervised uterine segmentation on endometrial cancer MRI slices is proposed, which only requires scribble label and is enhanced by pseudo-label technology, exponential geodesic distance loss and input disturbance strategy. Specifically, the limitations caused by the shortage of supervision are addressed by dynamically mixing the two outputs of the dual branch network to generate pseudo-labels, expanding supervision information and promoting mutual supervision training. On the other hand, considering the large difference of grayscale intensity between the uterus and surrounding tissues, the exponential geodesic distance loss is introduced to enhance the ability of the network to capture the edge of the uterus. Input disturbance strategies are incorporated to adapt to the flexible and variable characteristics of the uterus and further improve the segmentation performance of the network. The proposed method is evaluated on MRI images from 135 cases of endometrial cancer. Compared with other four weakly supervised segmentation methods, the performance of the proposed method is the best, whose mean DI, HD, Recall, Precision, ADP are 92.8%, 11.632, 92.7%, 93.6%, 6.5% and increasing by 2.1%, 9.144, 0.6%, 2.4%, 2.9% respectively. The experimental results demonstrate that the proposed method is more effective than other weakly supervised methods and achieves similar performance as those fully supervised.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107582DOI Listing

Publication Analysis

Top Keywords

weakly supervised
16
endometrial cancer
16
uterine segmentation
12
proposed method
12
supervised segmentation
8
cancer images
8
segmentation endometrial
8
pixel-level annotation
8
exponential geodesic
8
geodesic distance
8

Similar Publications