Drug repurposing and structure-based discovery of new PDE4 and PDE5 inhibitors.

Eur J Med Chem

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphodiesterase-4 (PDE4) and PDE5 responsible for the hydrolysis of intracellular cAMP and cGMP, respectively, are promising targets for therapeutic intervention in a wide variety of diseases. Here, we report the discovery of novel, drug-like PDE4 inhibitors by performing a high-throughput drug repurposing screening of 2560 approved drugs and drug candidates in clinical trial studies. It allowed us to identify eight potent PDE4 inhibitors with IC values ranging from 0.41 to 2.46 μM. Crystal structures of PDE4 in complex with four compounds, namely ethaverine hydrochloride (EH), benzbromarone (BBR), CX-4945, and CVT-313, were further solved to elucidate molecular mechanisms of action of these new inhibitors, providing a solid foundation for optimizing the inhibitors to improve their potency as well as selectivity. Unexpectedly, selectivity profiling of other PDE subfamilies followed by crystal structure determination revealed that CVT-313 was also a potent PDE5 inhibitor with a binding mode similar to that of tadalafil, a marketed PDE5 inhibitor, but distinctively different from the binding mode of CVT-313 with PDE4. Structure-guided modification of CVT-313 led to the discovery of a new inhibitor, compound 2, with significantly improved inhibitory activity as well as selectivity towards PDE5 over PDE4. Together, these results highlight the utility of the drug repurposing in combination with structure-based drug design in identifying novel inhibitors of PDE4 and PDE5, which provides a prime example for efficient discovery of drug-like hits towards a given target protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115893DOI Listing

Publication Analysis

Top Keywords

drug repurposing
12
pde4 pde5
12
pde4
8
pde4 inhibitors
8
well selectivity
8
pde5 inhibitor
8
binding mode
8
pde5
6
inhibitors
6
drug
5

Similar Publications

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF

Sertraline as a Scaffold for Antitrypanosoma Cruzi Drug Development: Design of Novel Derivatives and Computational Target Screening.

ChemMedChem

September 2025

Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, Caracas, 1041-A, Venezuela.

Due to the advantages of drug repurposing, the discovery of new chemotherapeutic agents for the treatment of Chagas disease based on approved drugs has become a strategy for identifying new candidates. In this work, the antidepressant drug sertraline is reported, with an IC of 7.8 ± 1.

View Article and Find Full Text PDF

Repurposed antihypertensive drugs for negative symptoms in schizophrenia: A systematic review and meta-analysis.

Psychiatry Clin Neurosci

September 2025

Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.

Schizophrenia is a complex psychiatric disorder characterized by positive, negative, and general psychopathological symptoms. While antipsychotic drugs are effective for positive symptoms, they provide limited benefit for negative symptoms, which are often persistent and strongly associated with functional disability. Additionally, up to 30% of patients exhibit resistance to current treatments, including clozapine.

View Article and Find Full Text PDF

More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.

View Article and Find Full Text PDF

Ovarian cancer (OvCa) remains the leading cause of gynecological cancer mortality, with most patients developing chemoresistance. Drug repurposing offers promising alternatives, with mebendazole (MBZ) showing anticancer activity. This study evaluates MBZ efficacy using Spectral Domain Optical Coherence Tomography (SD-OCT).

View Article and Find Full Text PDF