98%
921
2 minutes
20
Background: Serotonin is emerging as a promising therapeutic target in tryptophan hydroxylase 1-positive tumors, but further mechanistic studies are needed to effectively target dysregulated serotonin metabolism. One challenge is a lack of methods for studying the dynamic nature of serotonin metabolism. Here, we report the development of a genetically encoded luminescent biosensor, termed iSero-Rluc, for the real-time detection of serotonin in live cells.
Methods: The engineered serotonin binding domain (iSero) and Renilla luciferase (Rluc) reporter were cloned into yeast and mammalian expression vectors to create a fusion protein that could act as a biosensor to detect endogenous serotonin levels in live cells. The iSero-Rluc biosensor was stably expressed in the BON cell line and luciferase assays, mass spectroscopy, immunofluorescence, and Western blotting were used to study serotonin metabolism under different cell culture conditions.
Results: The iSero-Rluc sensor detected exogenous serotonin in a yeast model. When stably expressed in the BON cell line, iSero-Rluc revealed that serotonin biosynthesis is increased in an anchorage-independent growth state and is induced upon serum starvation.
Conclusion: The iSero-Rluc biosensor is a powerful tool in the study of tumor serotonin metabolism. It enabled real-time detection of alterations in serotonin synthesis in living cells under various growth conditions and has the potential to provide greater insight into serotonin metabolism in different stages of tumor progression and to identify therapeutic strategies to target cancer metastases and carcinoid crises.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872965 | PMC |
http://dx.doi.org/10.1016/j.surg.2023.09.018 | DOI Listing |
Front Public Health
September 2025
Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China.
Objective: To investigate the neural and molecular correlates of occupational burnout in nurses by integrating resting-state fMRI (rs-fMRI), clinical assessments, brain-wide gene expression, and neurotransmitter atlases.
Methods: Fifty-one female nurses meeting burnout criteria and 51 matched healthy controls underwent 3 T rs-fMRI. We analyzed fractional amplitude of low-frequency fluctuations (fALFF) and seed-based functional connectivity (FC), correlating findings with burnout (emotional exhaustion [EE], depersonalization [DP], and personal accomplishment [PA]).
J Metab Bariatr Surg
August 2025
Division of Foregut Surgery, Korea University College of Medicine, Seoul, Korea.
Metabolic and bariatric surgery induces metabolic benefits beyond weight loss, including improved insulin sensitivity, type 2 diabetes (T2D) remission, and reduced inflammation. Recent metabolomics research highlights amino acid metabolites-branched-chain amino acids, aromatic amino acids, and tryptophan-derived compounds-as key biomarkers for predicting surgical outcomes. Elevated preoperative levels of isoleucine, phenylalanine, levodopa, and 3-hydroxyanthranilic acid are associated with improved glycemic control and T2D remission.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.
View Article and Find Full Text PDFInt J Mol Med
November 2025
School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.
Enterochromaffin (EC) cell dysfunction decreases 5‑hydroxytryptamine (5‑HT) secretion, contributing to functional constipation (FC). However, the underlying mechanisms remain unclear. Piezo ion channels mediate 5‑HT release from EC cells.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.
The immune interactions within the gut-brain axis represent a critical etiological factor in psychiatric disorders. The gut microbiota and their metabolites serve as biological mediators that regulate neuroimmune activation and suppression in the central nervous system (CNS). During intestinal immune activation, pro-inflammatory cytokines (, IL-6, TNF-α) propagate to the CNS compromised blood-brain barrier (BBB) integrity or vagal afferent fibers, disrupting neurotransmitter metabolism and inducing microglial hyperactivation, thereby exacerbating neuroinflammation.
View Article and Find Full Text PDF