98%
921
2 minutes
20
Accurate tumor identification during surgical excision is necessary for neurosurgeons to determine the extent of resection without damaging the surrounding tissues. No conventional technologies have achieved reliable performance for pituitary adenomas. This study proposes a deep learning approach using intraoperative endoscopic images to discriminate pituitary adenomas from non-tumorous tissue inside the sella turcica. Static images were extracted from 50 intraoperative videos of patients with pituitary adenomas. All patients underwent endoscopic transsphenoidal surgery with a 4 K ultrahigh-definition endoscope. The tumor and non-tumorous tissue within the sella turcica were delineated on static images. Using intraoperative images, we developed and validated deep learning models to identify tumorous tissue. Model performance was evaluated using a fivefold per-patient methodology. As a proof-of-concept, the model's predictions were pathologically cross-referenced with a medical professional's diagnosis using the intraoperative images of a prospectively enrolled patient. In total, 605 static images were obtained. Among the cropped 117,223 patches, 58,088 were labeled as tumors, while the remaining 59,135 were labeled as non-tumorous tissues. The evaluation of the image dataset revealed that the wide-ResNet model had the highest accuracy of 0.768, with an F1 score of 0.766. A preliminary evaluation on one patient indicated alignment between the ground truth set by neurosurgeons, the model's predictions, and histopathological findings. Our deep learning algorithm has a positive tumor discrimination performance in intraoperative 4-K endoscopic images in patients with pituitary adenomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10143-023-02196-w | DOI Listing |
Mol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.
In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.
View Article and Find Full Text PDFChaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFRadiol Artif Intell
September 2025
Department of Radiology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, No. 197 Ruijin Er Road, Shanghai 200025, China.
Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).
View Article and Find Full Text PDF