98%
921
2 minutes
20
Genotype-by-environment (G×E) interactions can significantly affect crop performance and stability. Investigating G×E requires extensive data sets with diverse cultivars tested over multiple locations and years. The Genomes-to-Fields (G2F) Initiative has tested maize hybrids in more than 130 year-locations in North America since 2014. Here, we curate and expand this data set by generating environmental covariates (using a crop model) for each of the trials. The resulting data set includes DNA genotypes and environmental data linked to more than 70,000 phenotypic records of grain yield and flowering traits for more than 4000 hybrids. We show how this valuable data set can serve as a benchmark in agricultural modeling and prediction, paving the way for countless G×E investigations in maize. We use multivariate analyses to characterize the data set's genetic and environmental structure, study the association of key environmental factors with traits, and provide benchmarks using genomic prediction models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616096 | PMC |
http://dx.doi.org/10.1038/s41467-023-42687-4 | DOI Listing |
Antimicrob Agents Chemother
September 2025
GSK, Collegeville, Pennsylvania, USA.
Gepotidacin, a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial, was noninferior to nitrofurantoin in two pivotal trials (EAGLE-2 and EAGLE-3) in females with uncomplicated urinary tract infections (uUTIs). Using pooled data, gepotidacin activity and clinical efficacy were evaluated for subsets of molecularly characterized isolates in the microbiological Intent-to-Treat population. The subsets of isolates were characterized based on phenotypic/MIC criteria; all microbiological failure isolates were also characterized.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2025
Centro Nacional de Biotecnologia-CSIC, Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain.
Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Kranes Engineering Co., Eskisehir, Turkey.
Bronchopulmonary dysplasia (BPD) is a significant morbidity in premature infants. This study aimed to assess the accuracy of the model's predictions in comparison to clinical outcomes. Medical records of premature infants born ≤ 28 weeks and < 1250 g between January 1, 2020, and December 31, 2021, in the neonatal intensive care unit were obtained.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
In this work, we present a machine learning (ML) approach for predicting the optimal range separation parameters in transition metal complexes (TMCs), aiming to reduce the computational cost associated with optimally tuned range-separated hybrid (OT-RSH) functionals while preserving their accuracy. A data set containing 4380 TMCs was constructed by screening the tmQM database, with each TMC represented by a 62 087-dimensional multiple-fingerprint feature (MFF) vector and labeled with its optimally tuned range separation parameter. Multiple regression models were applied to train the prediction model, and the support vector machine (SVM) model yielded the best performance.
View Article and Find Full Text PDF