Improve Niche Colonization and Microbial Interactions for Organohalide-Respiring-Bacteria-Mediated Remediation of Chloroethene-Contaminated Sites.

Environ Sci Technol

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a -containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c05932DOI Listing

Publication Analysis

Top Keywords

chloroethene-contaminated sites
12
colonization ohrb
12
staggered fermentation
12
niche colonization
8
microbial interactions
8
bioremediation chloroethene-contaminated
8
fermenting bacteria
8
bacteria methanogens
8
enhanced colonization
8
ohrb
6

Similar Publications

Sustainable Abiotic-Biotic Dechlorination of Perchloroethene with Sulfidated Nanoscale Zero-Valent Iron as Electron Donor Source.

Environ Sci Technol

November 2024

State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Combining organohalide-respiring bacteria with nanoscale zero-valent iron (nZVI) represents a promising approach for remediating chloroethene-contaminated aquifers. However, limited information is available regarding their synergistic dechlorinating ability for chloroethenes when nZVI is sulfidated (S-nZVI) under the organic electron donor-limited conditions typically found in deep aquifers. Herein, we developed a combined system utilizing a mixed culture containing () and S-nZVI particles, which achieved sustainable dechlorination with repeated rounds of spiking with 110 μM perchloroethene (PCE).

View Article and Find Full Text PDF
Article Synopsis
  • Interpreting transcriptomic and metagenomic data from non-model microorganisms is complicated due to many unknown gene functions and sequences.
  • This study introduced a microarray called Dehalochip to detect gene expression related to chloroethene degradation, successfully identifying key dechlorination genes in contaminated groundwater samples.
  • The Dehalochip demonstrated sensitivity and specificity similar to quantitative PCR but is more suitable for in-situ applications, providing insights into microorganisms' roles and functional genes in environmentally harmful chloroethene degradation processes.
View Article and Find Full Text PDF

Aerobic co-metabolic cis-Dichloroethene degradation with Trichloroethene as primary substrate and effects of concentration ratios.

Chemosphere

February 2024

Department of Water Microbiology TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139, Karlsruhe, Germany. Electronic address:

Pollution with chloroethenes threaten groundwater resources worldwide. Cis-Dichloroethene (cDCE) and Trichloroethene (TCE) are widespread pollutants that often occur together at contaminated sites, either as primary discharges or as degradation products of anaerobic dechlorination. In this study, comprehensive microcosm experiments were conducted with groundwater samples of seven sites contaminated with chloroethenes.

View Article and Find Full Text PDF

Improve Niche Colonization and Microbial Interactions for Organohalide-Respiring-Bacteria-Mediated Remediation of Chloroethene-Contaminated Sites.

Environ Sci Technol

November 2023

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.

View Article and Find Full Text PDF

Genomic analysis of Acinetobacter pittii CEP14 reveals its extensive biodegradation capabilities, including cometabolic degradation of cis-1,2-dichloroethene.

Antonie Van Leeuwenhoek

August 2022

Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic.

Halogenated organic compounds are naturally occurring in subsurface environments; however, accumulation of the degradative intermediate cis-1,2-dichloroethene (cDCE) at soil and groundwater sites contaminated with xenobiotic chlorinated ethenes is a global environmental and public health issue. Identifying microorganisms capable of cDCE degradation in these environments is of interest because of their potential application to bioremediation techniques. In this study, we sequenced, assembled, and analyzed the complete genome of Acinetobacter pittii CEP14, a strain isolated from chloroethene-contaminated groundwater, that has demonstrated the ability for aerobic cometabolic degradation of cDCE in the presence of n-hexane, phenol, and toluene.

View Article and Find Full Text PDF