Precision nanoengineering for functional self-assemblies across length scales.

Chem Commun (Camb)

Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, , from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc02205fDOI Listing

Publication Analysis

Top Keywords

length scales
16
atomically precise
16
molecular self-assembly
8
self-assembly allows
8
metal nanoparticles
8
properties mechanical
8
self-assembly
5
precise
5
precision
4
precision nanoengineering
4

Similar Publications

Slimmer Geminals For Accurate F12 Electronic Structure Models.

J Chem Theory Comput

September 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.

The Slater-type F12 geminal length scales originally tuned for the second-order Mo̷ller-Plesset F12 method are too large for higher-order F12 methods formulated using the SP (diagonal fixed-coefficient spin-adapted) F12 ansatz. The new geminal parameters reported herein reduce the basis set incompleteness errors (BSIEs) of absolute coupled-cluster singles and doubles F12 correlation energies by a significant─and increase with the cardinal number of the basis─margin. The effect of geminal reoptimization is especially pronounced for the cc-pVZ-F12 basis sets (specifically designed for use with F12 methods) relative to their conventional aug-cc-pVZ counterparts.

View Article and Find Full Text PDF

Inescapable Anisotropy of Nonreciprocal XY Models.

Phys Rev Lett

August 2025

Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 75005 Paris, France.

We investigate nonreciprocal XY (NRXY) models defined on two-dimensional lattices in which the coupling strength of a spin with its neighbors varies with their position in the frame defined by the current spin orientation. As expected from the seminal work of Dadhichi et al., [Nonmutual torques and the unimportance of motility for long-range order in two-dimensional flocks, Phys.

View Article and Find Full Text PDF

Individually foraging ants use egocentric views as a dominant navigation strategy for learning and retracing routes. Evidence suggests that route retracing can be achieved by algorithms which use views as 'visual compasses', where individuals choose the heading that leads to the most familiar visual scene when compared to route memories. However, such a mechanism does not naturally lead to route approach, and alternative strategies are required to enable convergence when off-route and for correcting on-route divergence.

View Article and Find Full Text PDF

The relation between band topology and Majorana zero energy modes (MZMs) in topological superconductors had been well studied in the past decades. However, the relation between the quantum metric and MZMs has yet to be understood. In this Letter, we first construct a three band Lieb-like lattice model with an isolated flat band and tunable quantum metric.

View Article and Find Full Text PDF

Background And Objectives: As they age, many people experience memory changes that can impact their everyday functioning. The Memory Impact Questionnaire (MIQ) is a 51-item measure that assesses the negative impact of memory changes on one's lifestyle activities, negative appraisals of the self due to memory changes, perceived negative appraisals from others due to memory changes, and coping approaches intended to compensate for memory changes. To improve the utility of this tool, we developed a short form version of the MIQ and investigated its psychometric properties.

View Article and Find Full Text PDF