Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Laryngeal squamous cell carcinoma (LSCC) is a common tumor type. High recurrence rates remain an important factor affecting the survival and quality of life of advanced LSCC patients. We aimed to build a new nomogram and a random survival forest model using machine learning to predict the risk of LSCC progress. The study included 671 patients with AJCC stages III-IV LSCC. To develop a prognostic model, Cox regression analyses were used to assess the relationship between clinic-pathologic factors and disease-free survival (DFS). RSF analysis was also used to predict the DFS of LSCC patients. The ROC curve revealed that the Cox model exhibited good sensitivity and specificity in predicting DFS in the training and validation cohorts (1 year, validation AUC = 0.679, training AUC = 0.693; 3 years, validation AUC = 0.716, training AUC = 0.655; 5 years, validation AUC = 0.717, training AUC = 0.659). Random survival forest analysis showed that N stage, clinical stage, and postoperative chemoradiotherapy were prognostically significant variables associated with survival. The random forest model exhibited better prediction ability than the Cox regression model in the training cohort; however, the two models showed similar prediction ability in the validation cohort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613248 | PMC |
http://dx.doi.org/10.1038/s41598-023-45831-8 | DOI Listing |