Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A camera equipped with a transparent shield can be modeled using the pinhole camera model and residual error vectors defined by the difference between the estimated ray from the pinhole camera model and the actual three-dimensional (3D) point. To calculate the residual error vectors, we employ sparse calibration data consisting of 3D points and their corresponding 2D points on the image. However, the observation noise and sparsity of the 3D calibration points pose challenges in determining the residual error vectors. To address this, we first fit Gaussian Process Regression (GPR) operating robustly against data noise to the observed residual error vectors from the sparse calibration data to obtain dense residual error vectors. Subsequently, to improve performance in unobserved areas due to data sparsity, we use an additional constraint; the 3D points on the estimated ray should be projected to one 2D image point, called the ray constraint. Finally, we optimize the radial basis function (RBF)-based regression model to reduce the residual error vector differences with GPR at the predetermined dense set of 3D points while reflecting the ray constraint. The proposed RBF-based camera model reduces the error of the estimated rays by 6% on average and the reprojection error by 26% on average.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610825 | PMC |
http://dx.doi.org/10.3390/s23208430 | DOI Listing |