98%
921
2 minutes
20
In this research, a HPLC analysis, along with transcriptomics tools, was applied to evaluate chitosan and water stress for the prediction of phenolic flavonoids patterns and terpenoid components accumulation in Karel and . The results indicated that the tanshinone contents under drought stress conditions increased 4.2-fold with increasing drought stress intensity in both species. The rosmarinic acid content in the leaves varied from 0.038 to 11.43 mg/g DW. In addition, the flavonoid content was increased (1.8 and 1.4-fold) under mild water deficit conditions with a moderate concentration of chitosan (100 mg L). The application of foliar chitosan at 100 and 200 mg L under well-watered and mild stress conditions led to increases in hydroxyl cryptotanshinone (OH-CT) and cryptotanshinone (CT) contents as the major terpenoid components in both species. The expressions of the studied genes (DXS2, HMGR, KSL, 4CL, and TAT) were also noticeably induced by water deficit and variably modulated by the treatment with chitosan. According to our findings, both the drought stress and the application of foliar chitosan altered the expression levels of certain genes. Specifically, we observed changes in the expression levels of DXS and HMGR, which are upstream genes in the MEP and MVA pathways, respectively. Additionally, the expression level of KSL, a downstream gene involved in diterpenoid synthesis, was also affected. Finally, the present investigation confirmed that chitosan treatments and water stress were affected in both the methylerythritol phosphate pathway (MEP) and mevalonate (MVA) pathways, but their commitment to the production of other isoprenoids has to be considered and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607810 | PMC |
http://dx.doi.org/10.3390/ijms242015426 | DOI Listing |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFAnaesthesiologie
September 2025
Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
Sodium-glucose Cotransporter 2 (SGLT-2) inhibitors are oral antidiabetic drugs that were developed for the treatment of patients with diabetes mellitus and are now also approved for treating chronic heart failure and chronic kidney disease. By inhibiting SGLT‑2 in the proximal renal tubule, urinary excretion of glucose is increased. Large randomized trials have demonstrated improved glycemic control, reduced cardiovascular events and lower mortality but also an increased risk of urogenital infections and dehydration.
View Article and Find Full Text PDFOrg Lett
September 2025
Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
We report Lewis acid-catalyzed direct conversion of carboxylic acids into primary amides and nitriles using bis(trimethylsilyl)amine as an ammonia surrogate. With 1.1 equiv of bis(trimethylsilyl)amine, ytterbium(III) and hafnium(IV) triflates efficiently catalyzed the reaction, affording various primary amides in high yields with a broad substrate scope.
View Article and Find Full Text PDFEnviron Pollut
September 2025
ECOSPHERE, Department of Biology, University of Antwerp, Belgium.
PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.
View Article and Find Full Text PDFJ Breath Res
September 2025
Department of Anatomy, Physiology, and Cell Biology, , University of California Davis, School of Veterinary Medicine, Davis, California, 95616-5270, UNITED STATES.
Millions of people worldwide are exposed to environmental arsenic in drinking water, resulting in both malignant and nonmalignant diseases. Interestingly, early life exposure by itself is sufficient to produce higher incidences of these diseases later in life. Based on the delayed onset of disease, we hypothesized that early life arsenic exposure would also induce long-term alterations in the metabolic profile.
View Article and Find Full Text PDF