98%
921
2 minutes
20
Advanced reproductive technologies are utilized to identify the genetic mutations that lead to spermatogenic impairment, and allow informed genetic counseling to patients to prevent the transmission of genetic defects to offspring. The purpose of this study was to identify potential single nucleotide polymorphisms (SNPs) associated with male infertility. Genetic variants that may cause infertility are identified by combining the targeted next-generation sequencing (NGS) panel and whole exome sequencing (WES). The validation step of Sanger sequencing adds confidence to the identified variants. Our analysis revealed five distinct affected genes covering seven SNPs based on the targeted NGS panel and WES data: (rs16846616, 1515442, 1515441), (rs213950), (rs2273063), (r2903150), and (rs3809611). Infertile men have a higher mutation rate than fertile men, especially those with azoospermia. These findings strongly support the hypothesis that the dysfunction of microtubule-related and spermatogenesis-specific genes contributes to idiopathic male infertility. The , , , , and mutations are associated with male infertility, specifically azoospermia, and a further examination of this genetic function is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607339 | PMC |
http://dx.doi.org/10.3390/ijms242015363 | DOI Listing |
J Biomed Res
September 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University; Nanjing, Jiangsu 211166, China.
Non-obstructive azoospermia (NOA), characterized by impaired spermatogenesis and the complete absence of sperm in the ejaculate, represents one of the most severe forms of male infertility. Current diagnostic strategies rely on invasive procedures such as testicular sperm extraction, underscoring the urgent need for reliable, non-invasive alternatives. In the present study, we performed untargeted metabolomic profiling of human seminal plasma to identify biomarker panels capable of stratifying azoospermia subtypes through a stepwise approach.
View Article and Find Full Text PDFJ Assist Reprod Genet
September 2025
UFR-SVS, UVSQ, 78180, Montigny Le Bretonneux, France.
Introduction: Complex chromosomal rearrangements (CCRs) are frequently associated with infertility and have been described in the literature. Chromoanagenesis corresponds to a group of CCRs with a high number of chromosome breakpoints. These CCRs involving small structural variations can only be identified by using high-resolution genomic techniques.
View Article and Find Full Text PDFNat Commun
September 2025
Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
Radial spokes (RSs) are conserved multimolecular structures attached to the axonemal microtubule doublets and are essential for the motility control of both cilia and sperm flagella. CFAP91, an RS3 protein, is implicated in human male infertility, yet its molecular function remains poorly understood. Here, we demonstrate that Cfap91 knockout (KO) mice exhibit impaired sperm flagellum formation and male infertility.
View Article and Find Full Text PDFReprod Toxicol
September 2025
School of Public Health, Beihua University, Jilin 132013, China. Electronic address:
This study aimed to investigate the protective mechanism of Ginsenoside Rg3 (Rg3) against Di-n-butyl phthalate (DBP) induced spermatogenic damage, focusing on the Src/PI3K/Akt pathway. In vivo experiments demonstrated that Rg3 restored DBP-induced dysregulation of gap junction (GJ) protein connexin 43 (Cx43), improved testicular structure, enhanced sperm parameters (count and motility), and upregulated phosphorylation of Src, PI3K, and Akt (p-Src, p-PI3K, p-Akt) in mice. In vitro studies, using the metabolite of DBP, monobutyl phthalate (MBP), and pathway inhibitors (PP2 for Src and LY294002 for PI3K), further confirmed these effects.
View Article and Find Full Text PDFJ Reprod Immunol
September 2025
Laboratory of Immunology, Department of Biology, University of Crete, University Campus, Heraklion 70013, Crete, Greece. Electronic address:
Except from the myeloid in origin cells, ectopic expression of T-cell receptors (TCRs) was also detected in sperm and the female reproductive tract, which in conjunction with major histocompatibility complex (MHC) molecules suggested their involvement in mate choice. Following-up these observations and considering that MHC/TCR interactions could guide spermatozoa towards ovum, the present study aimed to delineate the presence of TCRs in sperm vis-à-vis cognate recognition and define such expression during spermatogenesis. Immunofluorescence experiments using fertile BALB/c males showed that despite the inbred origin of mice, all combinations of high (HI, >20 % expression) and low (LO, <5 % expression) TCRαβ and TCRγδ expression could be detected in equal distribution rates, followed by an inverse pattern of MHC expression.
View Article and Find Full Text PDF