98%
921
2 minutes
20
The Amazonian (Willd.) Kuntze nuts contain a lipidic fraction with health-promoting effects, but little is known about the bioactivity of other constituents. In this study, the lipidic fraction obtained using supercritical fluid extraction (SFE) with CO was chemically characterized by using lipidomics techniques. The SFE-CO residue, named as pracaxi cake, was re-extracted by pressurized liquid extraction following a biorefinery approach. Using a response surface methodology and based on the extraction yield and different assays, two optimum conditions were obtained: 80% and 12.5% of ethanol at 180 °C. Under these conditions, extraction yield and different measurements related to neuroprotection were assessed. Chemical characterization of these extracts suggested the presence of triterpenoid saponins and spermidine phenolamides, which were not previously reported in pracaxi nuts. These results suggest that pracaxi oil extraction by-products are a valuable source of bioactive compounds with neuroprotective potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606833 | PMC |
http://dx.doi.org/10.3390/foods12203879 | DOI Listing |
Nanoscale Horiz
September 2025
Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, Brazil.
This study developed heterogeneous catalysts composed of ZnO and CeO supported on H-ZSM-5 for the direct conversion of methane (CH) and carbon dioxide (CO) into acetic acid. The acid-base and electronic properties were modulated through oxide impregnation and reduction, aiming to create active sites capable of simultaneously activating both reactants. The samples were characterized by XRD, N physisorption, HRTEM/EDS, NH-TPD, CO-TPD, TPR, FTIR, XPS, CO-DRIFTS, and TGA, and tested in a batch reactor at 300 °C and 10 bar.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, Indian Institute of Techology Bombay, Powai, Mumbai 400076, India.
The direct α-α coupling of 3-pyrrolyl boron dipyrromethenes (BODIPYs) affords helical near-infrared (NIR)-active dimers in one step via a radical Pd-catalyzed process. X-ray analysis reveals Z-type helical packing stabilized by π-π stacking and hydrogen-bonding interactions. These dimers showed pronounced bathochromic absorption shifts compared to monomers and solvent-dependent charge-transfer bands up to 905 nm with fluorescence quenching.
View Article and Find Full Text PDFOrg Lett
September 2025
United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
A direct azidomethylation reaction at the sulfur atoms of thiols with -azidomethyldisulfonimides is presented, providing a facile and efficient approach for the synthesis of azidomethylated compounds with broad substrate scope and mild reaction conditions. Under optimized conditions using -azidomethyl-bis(4-trifluoromethylbenzene)sulfonimide as the azidomethyl source, various aliphatic and aromatic thiols furnish the corresponding -azidomethyl compounds in moderate to high yields. The reaction proceeds selectively at the mercapto group, even in substrates bearing polar functional groups.
View Article and Find Full Text PDFNano Lett
September 2025
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDF