Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As one kind of plant-derived extracellular vesicle, turmeric-derived exosome-like nanoparticles (TELNs) are composed of proteins, lipids, nucleic acids, and small-molecule compounds, which possess good biocompatibility and safety. They are especially rich in information from the "mother plant", which provides more applications in biological fields. In this study, we isolated and purified TELNs using differential centrifugation and ultracentrifugation and systematically detected their physicochemical properties using multi-omics. The TELNs possessed a typical teacup-like exosome morphology, and the extraction rate was approximately 1.71 ± 0.176 mg/g. The average particle size was 183.2 ± 10.9 nm, and the average zeta potential was -17.6 ± 1.19 mV. They were rich in lipids, mainly phosphatidylethanolamine (PE) (17.4%), triglyceride (TG) (12.3%), phosphatidylinositol (PI) (9.82%), and phosphatidylcholine (PC) (7.93%). All of them are the key lipids in the exosomes. The protein content was approximately 12% (M/M), mainly curcumin synthase and other proteins involved in secondary metabolite biosynthesis. In addition, there are critical essential genes for curcumin biosynthesis, such as curcumin synthase (CURS) and diketocoenzyme A synthase (DCS). More importantly, a greater variety of small-molecule compounds, primarily curcumin and curcumin analogs such as demethoxycurcumin and volatile oleoresins such as curcuminoids, have now been revealed. In conclusion, TELNs were successfully isolated, containing 0.17% (M/M) turmeric and a large amount of chemical information, the same as the parent-of-origin plant. This is the first time combining multi-omics to analyze the characteristics and nature of the TELNs, which laid a solid material foundation for the further development of turmeric.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604281 | PMC |
http://dx.doi.org/10.3390/bioengineering10101199 | DOI Listing |