98%
921
2 minutes
20
This research paper investigates the optimization of radiation performance of a plasma-based bioconvective nanofluid integrated Magneto-hydrodynamic (MHD) micropump for radiative oncology. It addresses a literature gap by analysing the radiative impact of blood-based hybrid nanofluids in MHD micropumps. Three blood-based bio-convective radiating hybrid nanofluids-blood-Pt, blood-Au and blood-MWCNT are studied to understand their radiation behaviour in MHD pump while being employed as transportation medium. The investigation employs two non-dimensional parameters, namely Rd (Radiation number) and Ha (Hartmann number), to examine the fluid dynamics, magnetic characteristics, and electrical properties of the MHD micropump. The temperature gradient, velocity distribution, and pressure drop along the flow channel are examined within the specified range of Rd and Ha. Magnetic flux density (MFD) and electric flux intensity (EFI) are evaluated to understand nanoparticle behaviour during drug delivery and blood transportation. Findings highlight that MWCNT and Pt are the most efficient bioconvective nanoparticles for plasma transportation under high radiative conditions. MWCNT-based blood flow exhibits desirable characteristics, including sufficient intake pressure of 4.5 kPa and minimal relative pressure drop of 34%. Coherence between radiation flux and electromagnetic flux reduces pumping power and ensures uniform heat dissipation for improved drug delivery. Au nanoparticles provide moderate magnetic flux density with least fluctuation within the range of Ha and Rd number (2.57 T to 4.39 T), even in highly radiative environments (such as-Rd = 4, Rd = 5), making them suitable for applications like embedded chemotherapy or cell treatment. Au nanoparticles maintain moderate electrical flux intensity with a minimal drop of 16nA, particularly at higher radiative environments influenced by the Radiation number (Rd = 4 to Rd = 5) while Ha values from Ha = 2 to Ha = 4. Conclusively, it has been identified that MWCNT and Au are superior nanofluids for advanced radiative oncological treatments. These nanofluids have the potential to enhance plasma transportation, thermal regulation, and aetilogical disease management. The present study provides significant findings on enhancing the radiation performance in MHD micropumps through utilization of blood-based hybrid nanofluids, thereby offering potential advantages to the domain of biomedical engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611780 | PMC |
http://dx.doi.org/10.1038/s41598-023-45513-5 | DOI Listing |
Heliyon
October 2024
Faculty of Engineering and Technology, Future University in Egypt New Cairo 11835, Egypt.
Inherited heat enhancement capabilities and their significance in the field of medical sciences and industry make nanofluids the focus of research nowadays. Furthermore, due to the remarkable advancements in bionanotechnology and its significance in biomedical fields such as drug delivery systems, cancer tumor therapy, bioimaging, and many others, it has emerged as a key research area. Contribution of cilia for the flow in ductus efferentes of human male reproductive tract is elaborated.
View Article and Find Full Text PDFSci Rep
October 2023
Mechanical and Production Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur, 1704, Bangladesh.
This research paper investigates the optimization of radiation performance of a plasma-based bioconvective nanofluid integrated Magneto-hydrodynamic (MHD) micropump for radiative oncology. It addresses a literature gap by analysing the radiative impact of blood-based hybrid nanofluids in MHD micropumps. Three blood-based bio-convective radiating hybrid nanofluids-blood-Pt, blood-Au and blood-MWCNT are studied to understand their radiation behaviour in MHD pump while being employed as transportation medium.
View Article and Find Full Text PDFMicromachines (Basel)
December 2017
Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
A liquid-metal based spiral magnetohydrodynamic (MHD) micropump is proposed in this work. The micropump was fabricated in a polydimethylsiloxane (PDMS)-glass hybrid microfluidic chip. This pump utilized two parallel liquid-metal-filled channels as electrodes to generate a parallel electrical field across the pumping channel between the two electrodes.
View Article and Find Full Text PDFAdv Funct Mater
June 2016
College of Engineering, The University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602, USA.
The presented article discusses recent advances in biomedical applications of classical Magnetohydrodynamics (MHD), with a focus on operating principles and associated material considerations. These applications address novel approaches to common biomedical problems from micro-particle sorting for lab-on-a-chip devices to advanced physiological monitoring techniques. 100 papers in the field of MHDs were reviewed with a focus on studies with direct biomedical applications.
View Article and Find Full Text PDFBiomed Microdevices
February 2011
Simulation & Modeling Laboratory, Central Mechanical Engineering Research Institute (Council of Scientific & Industrial Research), Durgapur 713209, India.
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid.
View Article and Find Full Text PDF