Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: The segmental bone defects post open distal femur fracture presents a reconstructive challenge, which often requires extreme solutions. The present study reviewed a new treatment strategy which used a cylindrical titanium mesh cage as an adjunct to the Masquelet technique.
Methods: We retrospectively reviewed a consecutive series of 23 patients treated for segmental bone defects post open distal femur fracture using a titanium mesh cage combined with the Masquelet technique under a 2-staged protocol in our institution from 2017 to 2021. The study group consisted of 13 men and 10 women with an average age of 44.1 years. The surgical debridement was performed with antibiotic polymethylmethacrylate (PMMA) cement spacer implanted into the bone defect combined with cement-wrapped plate stabilization, or antibiotic beads with vacuum sealing drainage (VSD) to cover the wound. The second stage of the Masquelet technique for bone defect repair began at least 4-6 weeks after the first stage, once all signs of possible infection were eliminated. After the cement spacer was removed, the definitive reconstruction was completed with exchange to a cylindrical titanium mesh cage filled with cancellous autograft within the induced membrane. The bone defect with cage was stabilized with a distal femoral Less Invasive Stabilization System (LISS). The radiological and clinical records of the enrolled patients were retrospectively analyzed.
Results: The mean follow-up was 38.6 months. The average number of operations before the second stage was 1.3. The mean interval between the two stages was 12.7 weeks. The average length of the defect measured 8.3 cm (ranging from 6.1 to 12.4 cm). All the defects filled with autograft within the cage achieved bony union, with a mean healing time of 8.4 months. At the latest follow-up, the mean knee extension measured 6.2° (ranging from 0° to 20°), and the mean flexion measured 101.8° (ranging from 60° to 120°). Complications included two instances of superficial stitch abscess, which eventually healed.
Conclusions: The use of a titanium cage implanted into an induced membrane in a 2-staged Masquelet protocol could achieve satisfactory clinical outcomes in cases of segmental defects following open distal femur fractures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.injury.2023.111130 | DOI Listing |