Feasibility of bioplastic production using micro- and macroalgae- A review.

Environ Res

School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India. Electronic address: pugal.smile@gmail

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastic disposal and their degraded products in the environment are global concern due to its adverse effects and persistence in nature. To overcome plastic pollution and its impacts on environment, a sustainable bioplastic production using renewable feedstock's, such as algae, are envisioned. In this review, the production of polymer precursors such as polylactic acid, polyhydroxybutyrates, polyhydroxyalkanoates, agar, carrageenan and alginate from microalgae and macroalgae through direct conversion and fermentation routes are summarized and discussed. The direct conversion of algal biopolymers without any bioprocess (whole algal biomass used emphasizing zero waste discharge concept) favours economic feasibility. Whereas indirect method uses conversion of algal polymers to monomers after pretreatment followed by bioplastic precursor production by fermentation are emphasized. This review paper also outlines the current state of technological developments in the field of algae-based bioplastic, both in industry and in research, and highlights the creation of novel solutions for green bioplastic production employing algal polymers. Finally, the cost economics of the bioplastic production using algal biopolymers are clearly mentioned with future directions of next level bioplastic production. In this review study, the cost estimation was given at laboratory level bioplastic production using casting methods. Further development of bioplastics at pilot scale level may give clear economic feasibility of production at industry. Here, in this review, we emphasized the overview of algal biopolymers for different bioplastic product development and its economic value and also current industries involved in bioplastic production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117465DOI Listing

Publication Analysis

Top Keywords

bioplastic production
28
algal biopolymers
12
production
10
bioplastic
9
direct conversion
8
conversion algal
8
economic feasibility
8
algal polymers
8
level bioplastic
8
algal
6

Similar Publications

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Physicochemical, microbiological, and microstructural changes in germinated wheat grain.

PLoS One

September 2025

Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.

This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.

View Article and Find Full Text PDF

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).

View Article and Find Full Text PDF