Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Colloidal quantum dots (CQDs) are finding increasing applications in optoelectronic devices, such as photodetectors and solar cells, because of their high material quality, unique and attractive properties, and process flexibility without the constraints of lattice match and thermal budget. However, there is no adequate device model for colloidal quantum dot heterojunctions, and the popular Shockley-Quiesser diode model does not capture the underlying physics of CQD junctions. Here, we develop a compact, easy-to-use model for CQD devices rooted in physics. We show how quantum dot properties, QD ligand binding, and the heterointerface between quantum dots and the electron transport layer (ETL) affect device behaviors. We also show that the model can be simplified to a Shockley-like equation with analytical approximate expressions for reverse saturation current, ideality factor, and quantum efficiency. Our model agrees well with the experiment and can be used to describe and optimize CQD device performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636828 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.3c02899 | DOI Listing |