Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An efficient synthesis of cyclic polymers (CPs) is in high demand due to their unique properties. However, polymer cyclization generally occurs at low concentrations (0.1 g/L), and the synthesis of CPs at high concentrations remains a challenge. Herein an efficient cyclization of poly(ethylene glycol) ( = 2000 g/mol, 4000 g/mol) (PEG-2k, PEG-4k) in high concentration (80 g/L) is realized by the assistance of polyrotaxane (pPRx). Water-soluble pPRx with a U-like-shape inclusion motif is prepared by mixing the 2-hydroxypropyl-γ-cyclodextrin (HPγCD) and PEG with ()-3,4,5-trimethoxycinnamate (, ). Subsequent irradiation of the pPRx solution (10-80 g/L) by UV light gives cyclic polymers through the intramolecular [2 + 2] photocycloaddition of the cinnamoyl moieties. The photoreaction of in the pPRx system gives cyclic monomers () as major products with a yield of 66% at 80 g/L. Additionally, the cyclization of also gives as major products with a yield of 45% at a concentration of 80 g/L.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.3c00527DOI Listing

Publication Analysis

Top Keywords

efficient synthesis
8
synthesis cyclic
8
high concentration
8
cyclic polymers
8
cps high
8
concentration g/l
8
major products
8
products yield
8
g/l
5
cyclic
4

Similar Publications

Multienzyme Cascade Coimmobilization on ZIF-8-Coated Magnetic Nanoparticles for Efficient d-Allulose Synthesis.

J Agric Food Chem

September 2025

The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.

This study develops a multienzyme coimmobilization strategy on NTA-functionalized ZIF-8-coated magnetic nanoparticles (NZMNPs) for efficient d-allulose synthesis. Under optimized immobilization conditions (enzyme-to-carrier ratio: 1:50 w/w, 30 min immobilization), the system achieved an immobilization efficiency of 93.7% along with 107.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Phosphole-based fluorophores are attractive dyes for bioimaging due to their relatively compact molecular structures, strong fluorescence up to the near-infrared region with large Stokes shifts, and remarkable resistance to photobleaching. Therefore, the development of efficient and chemoselective coupling methods for functionalizing phospholes is of significant interest for biomolecular labeling. Herein, we describe the synthesis of novel P-aminophospholes and their use for direct conjugation to cysteinyl peptides under mild conditions.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF