A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning assisted measurement of echocardiographic left heart parameters: improvement in interobserver variability and workflow efficiency. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine learning techniques designed to recognize views and perform measurements are increasingly used to address the need for automation of the interpretation of echocardiographic images. The current study was designed to determine whether a recently developed and validated deep learning (DL) algorithm for automated measurements of echocardiographic parameters of left heart chamber size and function can improve the reproducibility and shorten the analysis time, compared to the conventional methodology. The DL algorithm trained to identify standard views and provide automated measurements of 20 standard parameters, was applied to images obtained in 12 randomly selected echocardiographic studies. The resultant measurements were reviewed and revised as necessary by 10 independent expert readers. The same readers also performed conventional manual measurements, which were averaged and used as the reference standard for the DL-assisted approach with and without the manual revisions. Inter-reader variability was quantified using coefficients of variation, which together with analysis times, were compared between the conventional reads and the DL-assisted approach. The fully automated DL measurements showed good agreement with the reference technique: Bland-Altman biases 0-14% of the measured values. Manual revisions resulted in only minor improvement in accuracy: biases 0-11%. This DL-assisted approach resulted in a 43% decrease in analysis time and less inter-reader variability than the conventional methodology: 2-3 times smaller coefficients of variation. In conclusion, DL-assisted approach to analysis of echocardiographic images can provide accurate left heart measurements with the added benefits of improved reproducibility and time savings, compared to conventional methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10554-023-02960-5DOI Listing

Publication Analysis

Top Keywords

dl-assisted approach
16
left heart
12
automated measurements
12
compared conventional
12
conventional methodology
12
deep learning
8
echocardiographic images
8
analysis time
8
manual revisions
8
inter-reader variability
8

Similar Publications