[Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases].

Sichuan Da Xue Xue Bao Yi Xue Ban

West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid-liquid phase separation (LLPS), a novel mechanism of the organization and formation of cellular structures, plays a vital role in regulating cell fate transitions and disease pathogenesis and is gaining widespread attention. LLPS may lead to the assemblage of cellular structures with liquid-like fluidity, such as germ granules, stress granules, and nucleoli, which are classic membraneless organelles. These structures are typically formed through the high-concentration liquid aggregation of biomacromolecules driven by weak multivalent interactions. LLPS is involved in regulating various intracellular life activities and its dysregulation may cause the disruption of cellular functions, thereby contributing to the pathogenesis and development of neurodegenerative diseases, infectious diseases, cancers, etc. Herein, we summarized published findings on the LLPS dynamics of membraneless organelles in physiological and pathological cell fate transition, revealing their crucial roles in cell differentiation, development, and various pathogenic processes. This paper provides a fresh theoretical framework and potential therapeutic targets for LLPS-related studies, opening new avenues for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579061PMC
http://dx.doi.org/10.12182/20230960302DOI Listing

Publication Analysis

Top Keywords

cell fate
12
liquid-liquid phase
8
phase separation
8
fate transition
8
cellular structures
8
membraneless organelles
8
[role liquid-liquid
4
cell
4
separation cell
4
transition diseases]
4

Similar Publications

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Dual Role of DLK1 in GnRH Neuron Ontogeny.

Stem Cell Rev Rep

September 2025

Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.

View Article and Find Full Text PDF