Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study explored the use of deficit irrigation techniques for water management in the hydroponic greenhouse cultivation of cut roses. A factorial experiment was conducted using three irrigation treatments: full irrigation (FI), partial root drying (PRD), and sustained deficit irrigation (SDI), and three doses of titanium dioxide nanoparticle foliar application (0, 15, and 30 ppm) as stress alleviation. Results showed that drought stress increased biochemical parameters such as the plants' proline and total phenol content. Compared to SDI treatment, the PRD treatments have an increase in flower number by 40%. The PRD strategy has positive effects on drought tolerance by increasing osmotic and elastic adjustment. Therefore, higher relative water content and longer root length in PRD treatments were observed. Thus, Biomass water use efficiency significantly increased in PRD treatments compared to others. In the PRD treatment, yield WUE increases by 26% and 61% compared to FI and SDI, respectively. The results showed TiO-NPs positively affected mitigating and even improving some traits in drought stress conditions. These results suggest the superiority of the PRD strategy, which improves growth characteristics and water use efficiency, leading to increased sustainability, reduced environmental impact of greenhouse toxic wastewater, and total profitability of the greenhouse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590367 | PMC |
http://dx.doi.org/10.1038/s41598-023-45042-1 | DOI Listing |