A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A systematic approach to macro-level safety assessment and contributing factors analysis considering traffic crashes and violations. | LitMetric

A systematic approach to macro-level safety assessment and contributing factors analysis considering traffic crashes and violations.

Accid Anal Prev

School of Transportation Engineering, Tongji University, Shanghai 201804, China; The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During rapid urbanization and increase in motorization, it becomes particularly important to understand the relationships between traffic safety and risk factors in order to provide targeted improvements and policy recommendations. Violations and police enforcement are key variables, but the endogenous relationship between crashes and violations has made these variables unreliable and has limited their use. To manage this problem, this study developed a systematic approach for the joint modeling of crashes and violations to identify crash and violation hotspots and examine the mechanisms underlying macro-level contributing factors. Socio-economic, road network, public facility, traffic enforcement, and land use intensity data from 115 towns in Suzhou, China, were collected as independent variables. A bivariate negative binomial spatial conditional autoregressive model (BNB-CAR) and the potential for safety improvement (PSI) method were adopted to identify crash-prone and violation-prone areas, and an interpretable machine learning framework was applied to explore the factors' effects by area. Results showed that the proposed framework was able to accurately identify problem areas and quantify the impact of key factors, which, in Suzhou, were the number of traffic police and their daily patrol time. Considering such enforcement-related information provided important insights into reducing crash and violation frequency; for example, keeping the number of traffic police and daily patrol time under certain thresholds (number of police lower than 11 and patrol time lower than 2.3 h in this sample) was as effective as increasing these numbers for reducing the probability of high-crash and high-violation areas. The proposed approach can help traffic administrators identify the key contributing factors, especially enforcement factors, in crash-prone and violation-prone areas and provide guidelines for improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2023.107323DOI Listing

Publication Analysis

Top Keywords

contributing factors
12
crashes violations
12
patrol time
12
systematic approach
8
crash violation
8
crash-prone violation-prone
8
violation-prone areas
8
number traffic
8
traffic police
8
police daily
8

Similar Publications