Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The itch-scratching cycle is mediated by neural dynamics in the brain. However, our understanding of the neural dynamics during this cycle remains limited. In this study, we examine the neural dynamics of 126 mouse brain areas by measuring the calcium signal using fiber photometry. We present numerous response patterns in the mouse brain during the itch-scratching cycle. Interestingly, we find that a group of brain areas exhibit activation only at the end of histamine-induced scratching behavior. Additionally, several brain areas exhibit transient activation at the onset of scratching induced by chloroquine. Both histamine- and chloroquine-induced itch evoke diverse response patterns across the mouse brain. In summary, our study provides a comprehensive dataset for the diverse activity pattern of mouse brain during the itch-scratching cycle, paving the way for further exploration into the neural mechanisms underlying the itch-scratching cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2023.113304 | DOI Listing |