98%
921
2 minutes
20
An Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree-Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0172300 | DOI Listing |
J Chem Phys
September 2025
Yusuf Hamied Department of Chemistry. Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Folding and unfolding in molecules as simple as short hydrocarbons and as complicated as large proteins continue to be an active research field. Here, we investigate folding in n-C14H30 using both density functional theory (DFT)/B3LYP calculations of 27 772 local minima and a kinetic transition network calculated for a previously reported potential energy surface (PES) obtained by fitting roughly 250 000 B3LYP energies. In addition to generating a database of minima and the transition states that connect them, these calculations and the PES based on them have been used to develop a simple and accurate model for the energy landscape.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies.
View Article and Find Full Text PDFRSC Adv
September 2025
Computational Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
Two-dimensional van der Waals (2D-vdW) semiconducting ferroelectrics, such as CuInPSe (CIPSe) and CuInPS (CIPS), offer unique opportunities for lightweight, scalable, low-power nanoscale electronic devices. However, the limited pool of functional 2D-vdW ferroics highlights the need for clear design principles that can be used to guide experiments. Here, we use first-principles density functional theory (DFT) to study how isovalent atomistic substitution at In and P sites modifies structure, polarization, and electronic properties in CIPSe and CIPS.
View Article and Find Full Text PDF