Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: Mita M, Suzumori K, Kudo D, Saito K, Chida S, Hatakeyama K, Shimada Y, Miyakoshi N. Utility of a wearable robot for the fingers that uses pneumatic artificial muscles for patients with post-stroke spasticity. Jpn J Compr Rehabil Sci 2022; 13: 12-16.
Objective: We investigated the utility of a wearable robot for the fingers that we developed using pneumatic artificial muscles for rehabilitation of patients with post-stroke spasticity.
Methods: Three patients with post-stroke finger spasticity underwent rehabilitation for 20 minutes a day, 5 days a week, for 3 weeks. Passive range of motion, Modified Ashworth Scale (MAS), and circumference of each finger were measured before and after training and compared.
Results: The range of motion and finger circumference increased when using a wearable robot. The MAS improved partially, and no exacerbation was observed.
Conclusions: The wearable robot we developed is useful for rehabilitation of post-stroke spasticity and may improve venous return.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545049 | PMC |
http://dx.doi.org/10.11336/jjcrs.13.12 | DOI Listing |