A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Near- and far-field study of polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bowtie nano-apertures can confine light into deep subwavelength volumes with extreme field enhancement, making them a useful tool for various applications such as optical trapping, deep subwavelength imaging, nanolithography, and sensors. However, the correlation between the near- and far-field properties of bowtie nano-aperture arrays has yet to be fully explored. In this study, we experimentally investigated the polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays using both optical transmission spectroscopy and photoemission electron microscopy. The experimental results reveal a nonlinear redshift in the transmission spectra as the gap size of the bowtie nanoaperture decreases for vertically polarized light, while the transmission spectra remain unchanged with different gap sizes for horizontally polarized light. To elucidate the underlying mechanisms, we present simulated charge and current distributions, revealing how the electrons respond to light and generate the plasmonic fields. These near-field distributions were verified by photoemission electron microscopy. This study provides a comprehensive understanding of the plasmonic properties of bowtie nano-aperture, enabling their further applications, one of which is the optical switching of the resonance wavelength in the widely used visible spectral region without changing the geometry of the nanostructure.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.497045DOI Listing

Publication Analysis

Top Keywords

bowtie nano-aperture
16
nano-aperture arrays
12
near- far-field
8
polarization-dependent surface
8
surface plasmon
8
plasmon resonance
8
resonance bowtie
8
deep subwavelength
8
applications optical
8
properties bowtie
8

Similar Publications