A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A GAN-based deep enhancer for quality enhancement of retinal images photographed by a handheld fundus camera. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Due to limited imaging conditions, the quality of fundus images is often unsatisfactory, especially for images photographed by handheld fundus cameras. Here, we have developed an automated method based on combining two mirror-symmetric generative adversarial networks (GANs) for image enhancement.

Methods: A total of 1047 retinal images were included. The raw images were enhanced by a GAN-based deep enhancer and another methods based on luminosity and contrast adjustment. All raw images and enhanced images were anonymously assessed and classified into 6 levels of quality classification by three experienced ophthalmologists. The quality classification and quality change of images were compared. In addition, image-detailed reading results for the number of dubiously pathological fundi were also compared.

Results: After GAN enhancement, 42.9% of images increased their quality, 37.5% remained stable, and 19.6% decreased. After excluding the images at the highest level (level 0) before enhancement, a large number (75.6%) of images showed an increase in quality classification, and only a minority (9.3%) showed a decrease. The GAN-enhanced method was superior for quality improvement over a luminosity and contrast adjustment method (<0.001). In terms of image reading results, the consistency rate fluctuated from 86.6% to 95.6%, and for the specific disease subtypes, both discrepancy number and discrepancy rate were less than 15 and 15%, for two ophthalmologists.

Conclusions: Learning the style of high-quality retinal images based on the proposed deep enhancer may be an effective way to improve the quality of retinal images photographed by handheld fundus cameras.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577846PMC
http://dx.doi.org/10.1016/j.aopr.2022.100077DOI Listing

Publication Analysis

Top Keywords

retinal images
16
images
13
deep enhancer
12
images photographed
12
photographed handheld
12
handheld fundus
12
quality classification
12
quality
9
gan-based deep
8
fundus cameras
8

Similar Publications