β-Adrenergic Signaling Promotes Morphological Maturation of Astrocytes in Female Mice.

J Neurosci

Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and β-adrenergic receptors. We found that stimulation of β-adrenergic receptors increased primary branching of rodent astrocytes Conversely, astrocyte-conditional knockout of the β1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function. This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the β-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the β-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727121PMC
http://dx.doi.org/10.1523/JNEUROSCI.0357-23.2023DOI Listing

Publication Analysis

Top Keywords

gray matter
28
matter astrocytes
24
noradrenergic signaling
16
astrocytes
13
matter
9
female mice
8
astrocyte
8
gray
8
white matter
8
environmental cues
8

Similar Publications

Purpose: Postoperative delirium (POD) remains poorly understood in terms of predictors and underlying mechanisms. This review summarized emerging evidence on the association between brain microstructural alterations and POD.

Method: This is a narrative review, describing the microstructural changes in aging brain, microstructural MRI findings, relationship among microstructural alterations, cognitive reserve and POD, and potential interventions targeting microstructure.

View Article and Find Full Text PDF

Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).

Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.

View Article and Find Full Text PDF

Purpose: Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate ).

View Article and Find Full Text PDF

Mean apparent propagator MRI (MAP-MRI) quantifies subtle alterations in tissue microstructure noninvasively and provides a more nuanced and comprehensive assessment of tissue architectural and structural integrity compared with other diffusion MRI techniques. We investigate the sensitivity of MAP-MRI-derived quantitative imaging biomarkers to detect previously unseen microstructural damage in patients with mild traumatic brain injuries (mTBI), whose clinical scans otherwise appeared normal. We developed and validated an MAP-MRI data processing pipeline for analyzing diffusion-weighted images for use in healthy controls and mTBI patients whose longitudinal scans were obtained from the GE/NFL/mTBI MRI database.

View Article and Find Full Text PDF

Sexual dimorphism of white-matter functional connectome in healthy young adults.

Prog Neuropsychopharmacol Biol Psychiatry

September 2025

School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, PR China. Electronic address:

Background: Sexual dimorphism in human brain has garnered significant attention in neuroscience research. Although multiple investigations have examined sexual dimorphism in gray matter (GM) functional connectivity (FC), the research of white matter (WM) FC remains relatively limited.

Methods: Utilizing resting-state fMRI data from 569 healthy young adults, we investigated sexual dimorphism in the WM functional connectome.

View Article and Find Full Text PDF