A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Hydrodynamic Anisotropy of Depletion in Nonequilibrium. | LitMetric

Hydrodynamic Anisotropy of Depletion in Nonequilibrium.

Phys Rev Lett

State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Active colloids in a bath of inert particles of smaller size cause anisotropic depletion. The active hydrodynamics of this nonequilibrium phenomenon, which is fundamentally different from its equilibrium counterpart and passive particles in an active bath, remains scarcely understood. Here we combine mesoscale hydrodynamic simulation as well as theoretical analysis to examine the physical origin for the active depletion around a self-propelled noninteractive colloid. Our results elucidate that the variable hydrodynamic effect critically governs the microstructure of the depletion zone. Three characteristic states of anisotropic depletion are identified, depending on the strength and stress of activity. This yields a state diagram of depletion in the two-parameter space, captured by developing a theoretical model with the continuum kinetic theory and leading to a mechanistic interpretation of the hydrodynamic anisotropy of depletion. Furthermore, we demonstrate that such depletion in nonequilibrium results in various clusters with ordered organization of squirmers, which follows a distinct principle contrary to that of the entropy scenario of depletion in equilibrium. The findings might be of immediate interest to tune the hydrodynamics-mediated anisotropic interactions and active nonequilibrium organizations in the self-propulsion systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.134002DOI Listing

Publication Analysis

Top Keywords

depletion
9
hydrodynamic anisotropy
8
anisotropy depletion
8
depletion nonequilibrium
8
anisotropic depletion
8
active
5
hydrodynamic
4
nonequilibrium
4
nonequilibrium active
4
active colloids
4

Similar Publications