A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A method for simulating forward falls and controlling impact velocity. | LitMetric

A method for simulating forward falls and controlling impact velocity.

MethodsX

Department of Physical Therapy and Rehabilitation Science, University of Maryland.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Assessment of protective arm reactions associated with forward falls are typically performed by dropping research participants from a height onto a landing surface. The impact velocity is generally modulated by controlling the total height of the fall. This contrasts with an actual fall where the fall velocity is dependent on several factors in addition to fall height and not likely predictable at the onset of the fall. A counterweight and pulley system can be used to modulate the fall velocity in simulated forward falls in a manner that is not predictable to study participants, enhancing experimental validity. However, predicting the fall velocity based on participant height and weight and counterweight mass is not straightforward. In this article, the design of the FALL simulator For Injury prevention Training and assessment (FALL FIT) system is described. A dynamic model of the FALL FIT and counterweight system is developed and model parameters are fit using nonlinear optimization and experimental data. The fitted model enables prediction of fall velocity as a function of participant height and weight and counterweight load. The method can be used to provide controllable perturbations thereby elucidating the control strategy used when protecting the body from injury in a forward fall, how the control strategy changes because of aging or dysfunction or as a method for progressive protective arm reaction training.•Construction of device to simulate forward falls with controllable impact velocity using material that are commercially available is described•A dynamic model of the FALL FIT is developed to estimate the impact velocity of a simulated forward fall using participant height and counterweight load•The dynamic model is validated using data from 3 previous studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565865PMC
http://dx.doi.org/10.1016/j.mex.2023.102399DOI Listing

Publication Analysis

Top Keywords

forward falls
16
impact velocity
16
fall velocity
16
fall
14
participant height
12
fall fit
12
dynamic model
12
velocity
8
protective arm
8
velocity simulated
8

Similar Publications