Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2-associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level of community-wide immunity can induce immunological protection from SARS-CoV-2; however, questions about the trajectory of the adaptive immune responses and long-term immunity with respect to priming and repeated Ag exposure remain poorly explored. In this study, we examined the trajectory of adaptive immune responses following three doses of monovalent Pfizer BNT162b2 mRNA vaccination in immunologically naive and SARS-CoV-2 preimmune individuals without the occurrence of breakthrough infection. The IgG, B cell, and T cell Spike-specific responses were assessed in human blood samples collected at six time points between a moment before vaccination and up to 6 mo after the third immunization. Overall, the impact of repeated Spike exposures had a lower improvement on T cell frequency and longevity compared with IgG responses. Natural infection shaped the responses following the initial vaccination by significantly increasing neutralizing Abs and specific CD4+ T cell subsets (circulating T follicular helper, effector memory, and Th1-producing cells), but it had a small benefit at long-term immunity. At the end of the three-dose vaccination regimen, both SARS-CoV-2-naive and preimmune individuals had similar immune memory quality and quantity. This study provides insights into the durability of mRNA vaccine-induced immunological memory and the effects of preimmunity on long-term responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615651PMC
http://dx.doi.org/10.4049/immunohorizons.2300041DOI Listing

Publication Analysis

Top Keywords

long-term immunity
12
immune memory
8
trajectory adaptive
8
adaptive immune
8
immune responses
8
preimmune individuals
8
responses
6
vaccination
5
prior sars-cov-2
4
infection
4

Similar Publications

Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).

View Article and Find Full Text PDF

A Quantitative Assessment of the Phagocytosis of Allogeneic and Xenogeneic Erythrocytes by Rat Macrophages In Vitro.

J Vis Exp

August 2025

Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University; Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedici

Xenogeneic cell transplantation often faces significant immune rejection, even in immunodeficient animal models. Among residual immune components, macrophages can actively phagocytose transplanted human cells, posing a challenge to long-term engraftment. To address this, we developed a standardized in vitro assay to quantify macrophage-mediated phagocytosis of human versus rat red blood cells (RBCs).

View Article and Find Full Text PDF

Background And Objectives: Deucravacitinib, a first-in-class, oral, selective, allosteric tyrosine kinase 2 inhibitor, demonstrated efficacy across the primary endpoint and all key secondary endpoints in the phase 2 PAISLEY SLE trial in patients with active systemic lupus erythematosus (SLE). Here, we describe 2 phase 3 trials [POETYK SLE-1 (NCT05617677), POETYK SLE-2 (NCT05620407)] which will assess the efficacy and safety of deucravacitinib in patients with active SLE. These phase 3 trials have been designed to replicate the successful elements of the phase 2 trial, including its glucocorticoid-tapering strategy and disease activity adjudication.

View Article and Find Full Text PDF

To evaluate long‑term outcomes of corneal patch grafting (CPG) and to determine prognostic factors for anatomical and functional success. This retrospective study included 35 eyes from 35 patients who underwent CPG between April 2016 and September 2022 at Adana City Training and Research Hospital. Collected data included age, sex, preoperative and postoperative best-corrected visual acuity (BCVA), graft localization and size, anterior segment findings, graft survival, secondary surgical procedures, and rates of anatomical and functional success.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are nanosized vesicles naturally secreted by Gram-negative bacteria and represent a promising platform for vaccine development. OMVs possess inherent immunostimulatory properties due to the presence of pathogen-associated molecular patterns (PAMPs), providing self-adjuvanting capabilities and the ability to elicit both innate and adaptive immune responses. This review outlines the advantages of OMVs over traditional vaccine strategies, including their safety, modularity, and the potential for genetic engineering to enable targeted antigen delivery.

View Article and Find Full Text PDF