Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As the number of qubits in quantum computing increases, the scalability of existing qubit circuit structures and control systems may become insufficient for large-scale expansion and high-fidelity control. To address this challenge, we propose a behavioral-level model of a superconducting qubit and its control electronics, followed by a co-simulation to evaluate their performance. In this paper, we present the modeling process, simulation procedure, and resulting design specifications for the qubit control system. Our co-simulation approach utilizes MATLAB and Simulink, enabling us to derive critical circuit design specifications, such as the required Digital-to-Analog Converter (DAC) resolution, which should be 8 bits or higher, to achieve high-fidelity control. By taking into account factors such as DAC sampling rates, integral and differential nonlinearities, and filter characteristics, we optimize the control system for efficient and accurate qubit manipulation. Our model and simulation approach offer a promising solution to the scalability challenges in quantum computing, providing valuable insights for the design of large-scale superconducting quantum computing systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0163725 | DOI Listing |