High intensity perturbations induce an abrupt shift in soil microbial state.

ISME J

Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil microbial communities play a pivotal role in regulating ecosystem functioning. But they are increasingly being shaped by human-induced environmental change, including intense "pulse" perturbations, such as droughts, which are predicted to increase in frequency and intensity with climate change. While it is known that soil microbial communities are sensitive to such perturbations and that effects can be long-lasting, it remains untested whether there is a threshold in the intensity and frequency of perturbations that can trigger abrupt and persistent transitions in the taxonomic and functional characteristics of soil microbial communities. Here we demonstrate experimentally that intense pulses of drought equivalent to a 30-year drought event (<15% WHC) induce a major shift in the soil microbial community characterised by significantly altered bacterial and fungal community structures of reduced complexity and functionality. Moreover, the characteristics of this transformed microbial community persisted after returning soil to its previous moisture status. As a result, we found that drought had a strong legacy effect on bacterial community function, inducing an enhanced growth rate following subsequent drought. Abrupt transitions are widely documented in aquatic and terrestrial plant communities in response to human-induced perturbations. Our findings demonstrate that such transitions also occur in soil microbial communities in response to high intensity pulse perturbations, with potentially deleterious consequences for soil health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690886PMC
http://dx.doi.org/10.1038/s41396-023-01512-yDOI Listing

Publication Analysis

Top Keywords

soil microbial
16
microbial communities
12
high intensity
4
perturbations
4
intensity perturbations
4
perturbations induce
4
induce abrupt
4
abrupt shift
4
soil
4
shift soil
4

Similar Publications

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared to conventional formulations.

J Adv Res

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: tangtao@za

Introduction: Microencapsulated pyraclostrobin (PYR-CS) has gained widespread adoption in agriculture owing to its extended efficacy and reduced risks for non-target organisms. However, knowledge remains limited regarding its degradation in soil and effects on soil microorganisms.

Objectives: This study investigates the hypothesis that microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared with conventional formulations, including emulsifiable concentrate (PYR-EC) and technical material (PYR-TC).

View Article and Find Full Text PDF

Polyethylene microplastic pollution drives quorum sensing-mediated enrichment of rhizosphere pathogens, resistance genes, and virulence factors genes.

J Hazard Mater

September 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Lanzhou Eco-Agriculture Experimental Research Station, Lanzhou 730000, China; Key Laboratory of Stress Physio

Microplastics are pervasive soil pollutants, yet their role in driving microbial risk in medicinal plant rhizospheres remains poorly understood. Using polyethylene microplastics (PE-MPs) as a model, this study investigated the dose-dependent effects of PE-MPs (0-1000 mg/kg) on the dynamics of antibiotic resistance genes (ARGs), biocide/metal resistance genes (BMRGs), virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs) in the rhizosphere of Angelica sinensis. Results showed that PE-MPs exposure increased the abundance of these genes and pathogens while simplifying the host microbial community structure.

View Article and Find Full Text PDF

The application of manure and straw is beneficial for improving the content and stability of DOM in paddy soil.

J Environ Manage

September 2025

College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China. Electronic address:

While organic manure application effectively increases soil organic carbon (SOC) content, it may elevate greenhouse gas emissions. Crop straw, a widely available agricultural residue, enhances SOC through gradual decomposition. The effect of organic manure combined with crop straw on the organic carbon components of paddy soil is still unclear.

View Article and Find Full Text PDF