A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting vertebral compression fracture prior to spinal SBRT using radiomics from planning CT. | LitMetric

Predicting vertebral compression fracture prior to spinal SBRT using radiomics from planning CT.

Eur Spine J

Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The purpose of the study was to develop a predictive model for vertebral compression fracture (VCF) prior to spinal stereotactic body radiation therapy (SBRT) using radiomics features extracted from pre-treatment planning CT images.

Methods: A retrospective analysis was conducted on 85 patients (114 spinal lesions) who underwent spinal SBRT. Radiomics features were extracted from pre-treatment planning CT images and used to develop a predictive model using a classification algorithm selected from nine different machine learning algorithms. Four different models were trained, including clinical features only, clinical and radiomics features, radiomics and dosimetric features, and all features. Model performance was evaluated using accuracy, precision, recall, F1-score, and area under the curve (AUC).

Results: The model that used all features (radiomics, clinical, and dosimetric) showed the highest performance with an AUC of 0.871. The radiomics and dosimetric features model had the superior performance in terms of accuracy, precision, recall, and F1-score.

Conclusion: The developed predictive model based on radiomics features extracted from pre-treatment planning CT images can accurately predict the likelihood of VCF prior to spinal SBRT. This model has significant implications for treatment planning and preventive measures for patients undergoing spinal SBRT. Future research can focus on improving model performance by incorporating new data and external validation using independent data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-023-07963-3DOI Listing

Publication Analysis

Top Keywords

spinal sbrt
16
radiomics features
16
prior spinal
12
sbrt radiomics
12
predictive model
12
features extracted
12
extracted pre-treatment
12
pre-treatment planning
12
features
9
vertebral compression
8

Similar Publications