Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It was recently reported for two globular proteins and a short DNA hairpin in NaCl buffer that values of the transition heat capacities, and , for equal concentrations (mg/mL) of DNA and proteins, are essentially equivalent (differ by less than 1%). Additional evidence for this equivalence is presented that reveals this phenomenon does not depend on DNA sequence, buffer salt, or T. Sequences of two DNA hairpins were designed to confer a near 20°C difference in their T's. For the molecules, in NaCl and CsCl buffer the evaluated and were equivalent. Based on the equivalence of transition heat capacities, a calorimetric method was devised to determine protein concentrations in pure and complex solutions. The scheme uses direct comparisons between the thermodynamic stability of a short DNA hairpin standard of known concentration, and thermodynamic stability of protein solutions of unknown concentrations. In all cases, evaluated protein concentrations determined from the DNA standard curve agreed with the UV-Vis concentration for monomeric proteins. For samples of multimeric proteins, streptavidin (tetramer), Herpes Simplex Virus glycoprotein D (trimer/dimer), and a 16 base pair DNA duplex (dimer), evaluated concentrations were greater than determined by UV-Vis by factors of 3.94, 2.65, and 2.15, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557601PMC
http://dx.doi.org/10.1101/2023.09.25.559360DOI Listing

Publication Analysis

Top Keywords

dna
8
determine protein
8
short dna
8
dna hairpin
8
transition heat
8
heat capacities
8
protein concentrations
8
thermodynamic stability
8
concentrations
5
calorimetric analysis
4

Similar Publications

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

The impact of melatonin-enriched media on epigenetic and perinatal changes induced by embryo culture in a mouse model.

J Assist Reprod Genet

September 2025

Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.

Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).

View Article and Find Full Text PDF

This study addresses historical uncertainties regarding morphological variation in the paraprocts of Tupiperla illiesi, a stonefly with a complex taxonomic history. We tested whether these variations represent phenotypic plasticity or distinct species using integrative taxonomy. Adult gripopterygids were collected from Estação Biológica de Boracéia utilizing Malaise and light traps.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF