A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Kir1.1 and SUR1 are not implicated as subunits of an adenosine triphosphate-sensitive potassium channel involved in diazoxide cardioprotection. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The adenosine triphosphate-sensitive potassium channel opener diazoxide mimics ischemic preconditioning and is cardioprotective. Clarification of diazoxide's site and mechanism of action could lead to targeted pharmacologic therapies for patients undergoing cardiac surgery. Several mitochondrial candidate proteins have been investigated as potential adenosine triphosphate-sensitive potassium channel components. Renal outer medullary potassium (Kir1.1) and sulfonylurea sensitive regulatory subunit 1 have been suggested as subunits of a mitochondrial adenosine triphosphate-sensitive potassium channel. We hypothesized that pharmacologic blockade or genetic deletion (knockout) of renal outer medullary potassium and sensitive regulatory subunit 1 would result in loss of diazoxide cardioprotection in models of global ischemia with cardioplegia.

Methods: Myocyte volume and contractility were compared after Tyrode's physiologic solution (20 minutes), stress (hyperkalemic cardioplegia ± diazoxide, ± VU591 (Kir1.1 inhibitor), N = 9 to 23 each, 20 min), and Tyrode's (20 minutes). Isolated mouse (wild-type, sensitive regulatory subunit 1 [-/-], and cardiac knockout renal outer medullary potassium) hearts were given cardioplegia ± diazoxide (N = 9-16 each) before global ischemia (90 minutes) and 30 minutes reperfusion. Left ventricular pressures were compared before and after ischemia.

Results: Stress (cardioplegia) was associated with reduced myocyte contractility that was prevented by diazoxide. Isolated myocytes were not responsive to diazoxide in the presence of VU591. In isolated hearts, diazoxide improved left ventricular function after prolonged ischemia compared with cardioplegia alone in wild-type and knockout (sensitive regulatory subunit 1 [-/-] and cardiac knockout renal outer medullary potassium) mice.

Conclusions: Isolated myocyte and heart models may measure independent and separate actions of diazoxide. By definitive genetic deletion, these data indicate that sensitive regulatory subunit 1 and renal outer medullary potassium are not implicated in cardioprotection by diazoxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556815PMC
http://dx.doi.org/10.1016/j.xjon.2023.06.004DOI Listing

Publication Analysis

Top Keywords

renal outer
20
outer medullary
20
medullary potassium
20
sensitive regulatory
20
regulatory subunit
20
adenosine triphosphate-sensitive
16
triphosphate-sensitive potassium
16
potassium channel
16
knockout renal
12
potassium
9

Similar Publications