Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO-especially without inducing structural changes-has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 10 cm without inducing any measurable structural changes. We find that the MIT temperature (T) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556139PMC
http://dx.doi.org/10.1038/s41467-023-41816-3DOI Listing

Publication Analysis

Top Keywords

correlated electron
16
electron insulator
8
insulating state
8
phase transitions
8
modulation-doping correlated
4
electron
4
insulator correlated
4
electron materials
4
materials cems
4
cems host
4

Similar Publications

Ultrafast Correlation Energy Estimator.

J Phys Chem A

September 2025

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.

A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in fundamental cellular processes including cytokinesis, endosomal sorting, nuclear envelope reformation, and membrane repair. Membrane constriction and scission is driven by the filament-forming ESCRT-III complex and the AAA-ATPase VPS4. While ESCRT-III-driven membrane scission is generally established, the mechanisms governing the assembly and coordination of its twelve mammalian isoforms in cells remain poorly understood.

View Article and Find Full Text PDF

Explicitly correlated geminal-based perturbation theory.

J Chem Phys

September 2025

Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia.

An explicitly correlated extension of a pair-function based perturbation theory is presented. The reference is obtained as the antisymmetrized product of strongly orthogonal geminals, termed Strictly Localized Geminals (SLG), which can capture static correlation at mean-field cost. Geminals entering SLG are spin unrestricted, in general, and are expanded in the one-electron basis of the natural orbitals of the unrestricted Hartree-Fock wavefunction.

View Article and Find Full Text PDF

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.

View Article and Find Full Text PDF