A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supervised deep learning (DL) algorithms are highly dependent on training data for which human graders are assigned, for example, for optical coherence tomography (OCT) image annotation. Despite the tremendous success of DL, due to human judgment, these ground truth labels can be inaccurate and/or ambiguous and cause a human selection bias. We therefore investigated the impact of the size of the ground truth and variable numbers of graders on the predictive performance of the same DL architecture and repeated each experiment three times. The largest training dataset delivered a prediction performance close to that of human experts. All DL systems utilized were highly consistent. Nevertheless, the DL under-performers could not achieve any further autonomous improvement even after repeated training. Furthermore, a quantifiable linear relationship between ground truth ambiguity and the beneficial effect of having a larger amount of ground truth data was detected and marked as the more-ground-truth effect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202300274DOI Listing

Publication Analysis

Top Keywords

ground truth
20
human selection
8
selection bias
8
deep learning
8
optical coherence
8
coherence tomography
8
human
5
ground
5
truth
5
bias drives
4

Similar Publications