Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Manual guidewire navigation and placement for minimally invasive surgeries suffer from technical challenges due to imprecise tip motion control to traverse highly tortuous vasculature. Robotically steerable guidewires can address these challenges by actuating a compliant tip through multiple degrees-of-freedom for maneuvering through vascular pathways. In this paper, we detail the kinematic mapping of a COaxially Aligned STeerable (COAST) guidewire robot that is capable of executing follow-the-leader motion in three dimensional vascular pathways. We also develop an analytical Jacobian model to perform velocity kinematics for the robot and finally, we implement Jacobian-based control to demonstrate follow-the-leader motion of the guidewire in free space, within 3D-printed phantoms, and within animal vasculature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544820 | PMC |
http://dx.doi.org/10.1109/tmrb.2022.3216026 | DOI Listing |