Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: Oncogenic KRAS mutations drive cancer progression in lung, colon, breast, and pancreatic ductal adenocarcinomas. Apart from the current strategies, such as KRAS upstream inhibitors, downstream effector inhibitors, interaction inhibitors, cell cycle inhibitors, and direct KRAS inhibitors, against KRAS-mutated cancers, the therapeutic small interfering RNAs (siRNAs) represent a promising alternative strategy that directly binds with the target mRNA and inhibits protein translation via mRNA degradation. Here, in the present study, we utilized various in silico approaches to design potential siRNA candidates against KRAS mRNA. We have predicted nearly 17 siRNAs against the KRAS mRNA, and further through various criteria, such as U, R, and A rules, GC%, secondary structure formation, mRNA-siRNA duplex stability, Tm (Cp), Tm (Conc), and inhibition efficiency, they have been filtered into 4 potential siRNAs namely siRNA8, siRNA11, siRNA12, and siRNA17. Further, the molecular docking analysis revealed that the siRNA8, siRNA11, siRNA12, and siRNA17 showed higher negative binding energies, such as - 379.13 kcal/mol, - 360.19 kcal/mol, - 288.47 kcal/mol, and - 329.76 kcal/mol, toward the human Argonaute2 protein (hAgo2) respectively. In addition, the normal mode analysis of the hAgo2-siRNAs complexes indicates the structural changes and deformation of the hAgo2 protein upon the binding of siRNA molecules in the dynamic environment which suggests that these siRNAs could be effective. Finally, we conclude that these 4 siRNAs have therapeutic potential against KRAS mRNA and also have to be studied in vitro and in vivo to evaluate their specificity toward mutant KRAS (not degrading wild-type KRAS) Also, the current challenges in the use of siRNA therapeutics could be overcome by the emerging siRNA delivery methods, such as Antibody-siRNA conjugates (ARCs) and Gelatin-Antibody Delivery System (GADS), in the near future and these siRNAs could be employed as potential therapeutic agents against KRAS-mutated cancers.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03767-w.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541393 | PMC |
http://dx.doi.org/10.1007/s13205-023-03767-w | DOI Listing |