Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Increasing atmospheric CO drives ocean acidification globally. In coastal seas, acidification trends can however be either counteracted or enhanced by other processes. Ecosystem effects of acidification are so far small in the Baltic Sea, but changes should be anticipated unless CO emissions are curbed. Possible future acidification trends in the Baltic Sea, conditional on CO emissions, climate change, and changes in productivity, can be assessed by means of model simulations. There are uncertainties regarding potential consequences for marine organisms, partly because of difficulties to assign critical thresholds, but also because of knowledge gaps regarding species' capacity to adapt. Increased temporal and spatial monitoring of inorganic carbon system parameters would allow a better understanding of current acidification trends and also improve the capacity to predict possible future changes. An additional benefit is that such measurements also provide quantitative estimates of productivity. The technology required for precise measurements of the inorganic carbon system is readily available today. Regularly updated status evaluations of acidification, and the inorganic carbon system in general, would support management when assessing climate change effects, eutrophication or characteristics of the pelagic habitats. This would, however, have to be based on a spatially and temporally sufficient monitoring program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539381PMC
http://dx.doi.org/10.1038/s41598-023-43596-8DOI Listing

Publication Analysis

Top Keywords

baltic sea
12
acidification trends
12
inorganic carbon
12
carbon system
12
climate change
8
acidification
6
consequences acidification
4
acidification baltic
4
sea implications
4
implications monitoring
4

Similar Publications

Introduction: Harbor seals () and grey seals () are infected by trophically transmitted intestinal cestodes of the genus . species can cause zoonotic infections in humans when larval stages are ingested with undercooked fish products. Diphyllobothriid cestode prevalence, infection dynamics, and health impact in phocid seals around densely populated coastal areas are little understood, and their species delineation remains challenging.

View Article and Find Full Text PDF

The capacity of river mouths to reduce storm surge water levels upstream, referred to as along-estuary attenuation, has been assessed by several studies. The coastal protection function of semi-enclosed water bodies such as lagoons and channels with narrow inlets remains less explored and generalization is hampered by differences in morphology and hydrodynamic forcing. Here we use a hydrodynamic model to investigate surge attenuation along a microtidal channel with a narrow inlet at the Baltic Sea coast of Germany called The Schlei.

View Article and Find Full Text PDF

The record storm surge of October 2023, which hit the southwestern German Baltic Sea, not only resulted in significant damages to coastal communities and infrastructure but also demonstrated that the region was prepared and able to avoid loss of lives and other catastrophic impacts. Numerical modelling has been a key tool utilised for providing information to support coastal flood management, at different levels of planning, for such events. Based on recent research conducted in the Baltic coast region as well as on empirical evidence acquired during the event, we present an operational scheme that utilises modelling tools and frameworks for supporting coastal flood management in the region.

View Article and Find Full Text PDF

The microplastics (0.3-5 mm) and mesoplastics (5-25 mm) in the non-tidal estuary of the Pregolya River (south-eastern Baltic Sea) were investigated for the first time in order to trace the retention zone (estuarine microplastic maxima, EMPM) at the river-sea interface, which is characterised by a salinity gradient. The mean abundance of all plastics (0.

View Article and Find Full Text PDF

Decarbonising the plastic industry: A review of carbon emissions in the lifecycle of plastics production.

Sci Total Environ

August 2025

Tallinn University of Technology, Department of Civil Engineering and Architecture, Ehitajate tee 5, 19086 Tallinn, Estonia. Electronic address:

The role of plastics is well-documented in the literature reflecting on its impact on a global economy, planetary and human health. However, there is an urgent need for additional studies analysing their carbon emissions and ways to handle them. This short communication discusses the measures needed to understand and mitigate plastics' carbon footprint while paving a path toward cleaner, sustainable and circular plastic industry.

View Article and Find Full Text PDF